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Limits of solutions to the semilinear plate equation

with small parameter

Andrei Perjan, Galina Rusu

Abstract. We study the existence of the limits of solutions to the semilinear plate
equation with boundary Dirichlet condition with a small parameter coefficient of the
second order derivative in time. We establish the convergence of solutions to the
perturbed problem and their derivatives in spacial variables to the corresponding
solutions to the unperturbed problem as the small parameter tends to zero.
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1 Introduction

Let Ω ⊂ R
n be an open and bounded set with the smooth boundary ∂Ω. Consider

the following initial boundary value problem for the plate equation:





ε utt(x, t) + ut(x, t) + ∆2u(x, t) + B(u(t)) = f(x, t), (x, t) ∈ Ω × (0, T ),

u
∣∣
t=0

= u0(x), ut

∣∣
t=0

= u1(x), x ∈ Ω,

u
∣∣
x∈∂Ω

=
∂u

∂ν̄

∣∣∣
x∈∂Ω

= 0, t ≥ 0,

(Pε)

where ν̄ is the outer normal vector to ∂Ω and ε is a small positive parameter.

We study the behaviour of the solutions to the problem (Pε) as ε → 0. It is
natural to expect that the solutions to the problem (Pε) tend to the corresponding
solutions to the following unperturbed problem:





vt(x, t) + ∆2v(x, t) + B(v(t)) = f(x, t), (x, t) ∈ Ω × (0, T ),

v
∣∣
t=0

= u0(x), x ∈ Ω,

v
∣∣
x∈∂Ω

=
∂v

∂ν̄

∣∣∣
x∈∂Ω

= 0, t ≥ 0,

(P0)

as ε → 0.

We investigate two cases: the first case when the operator B is Lipschitzian and
the second case when the operator B is monotone.
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The main results are contained in Theorems 8 and 9. Under some conditions on
u0, u1 and f we prove that

u → v in C([0, T ];L2(Ω)) ∩ L∞(0, T ;H2(Ω)), as ε → 0. (1)

This means that the perturbation (Pε) of the system (P0) is regular in the indicated
norms. At the same time, we prove that

u′ − v′ − α e−t/ε → 0 in C([0, T ];L2(Ω)) ∩ L∞(0, T ;H2(Ω)), α 6= 0, as ε → 0. (2)

It means that the derivatives of the solutions to the problem (Pε) do not converge
to the derivatives of the corresponding solutions to the problem (P0), as ε → 0.
The relation (2) shows that the derivative u′ has a singular behaviour, as ε → 0, in
the neighborhood of t = 0. This singular behaviour is determined by the function
αe−τ/ε, which is the boundary layer function and the neighborhood of t = 0 is the

boundary layer for u′.
The proofs of the relations (1) and (2) are based on two key points. The first

one is the relationship between the solutions to the problem (P0) and (Pε) in the
linear case (see Lemma 3 and Theorem 7). The second key point is the a priori

estimates of the solutions to the problem (Pε), which are uniform relative to the
small parameter ε (see Lemmas 1 and 2).

The singularly perturbed nonlinear problems of hyperbolic-parabolic type were
studied by many authors. Without pretending to a complete list of the papers in
this area, we mention the works [4–11] containing a wide list of references.

In what follows, we use some notations. For m ∈ [1,∞) denote by

Lm(Ω) = {f : a.e. Ω → C;

∫

Ω
|f(x)|m dx < ∞},

the Banach space, endowed with the norm

||f ||Lm(Ω) =
( ∫

Ω
|f(x)|m dx

)1/m

and for m = ∞ denote by

L∞(Ω) = {f : a.e. Ω → C; ess supΩ |f(x)| < ∞}

the Banach space, endowed with the norm

||f ||L∞(Ω) = ess supΩ |f(x)|.

By Lm
loc(Ω) denote the space of integrable functions on each compact K ⊂⊂ Ω.

Denote by W l,m(Ω) the Banach space of all elements of Lm(Ω) whose derivatives
∂αu in the sense of distributions up to the order l belong to Lm(Ω). The norm in
W l,m(Ω) is defined as

||u||W l,m(Ω) =
( ∫

Ω

∑

|α|≤l

∣∣∂αu|m dx
)1/m

.
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By W l,m
loc (Ω) denote the local Sobolev space, i.e. a function u ∈ W l,m

loc (Ω) if
u ∈ W l,m(K) for every compact K ⊂⊂ Ω.

For k ∈ N we denote by Hk(Ω) (H0(Ω) := L2(Ω)) the usual real Hilbert spaces
equipped with the following scalar product and norm:

(
u, v

)
Hk(Ω)

=

∫

Ω

∑

|α|≤k

∂αu(x)∂αv(x)dx, ||u||Hk(Ω) =
(∫

Ω

∑

|α|≤k

|∂αu(x)|2 dx
)1/2

.

Denote by Hk
0 (Ω) the closure of C∞

0 (Ω) in the norm of the space Hk(Ω). By
H−k(Ω) denote the dual space of Hk

0 (Ω), i.e. H−k(Ω) = (Hk
0 (Ω))′.

Denote by V the space V = {u ∈ H2(Ω);u|∂Ω =
∂u

∂ν̄
|∂Ω = 0}, endowed with the

norm of the space H2(Ω), and by V ′ the dual space of the space V . We will write
〈·, ·〉 to denote the pairing between V ′ and V . Also denote by

(u, v) =

∫

Ω

u(x)v(x)dx, |u| = ||u||L2(Ω), ||u|| = ||u||H2(Ω).

Let X be a Banach space. For k ∈ N, p ∈ [1,∞) and (a, b) ⊂ (−∞,+∞)
we denote by W k,p(a, b;X) the usual Sobolev space of the vectorial distributions
W k,p(a, b;X) = {f ∈ D′(a, b,X); f (l) ∈ Lp(a, b;X), l = 0, 1, . . . , k} equipped with
the norm

||f ||W k,p(a,b;X) =
( k∑

l=0

||f (l)||pLp(a,b;X)

)1/p
.

For each k ∈ N,W k,∞(a, b;X) is the Banach space equipped with the norm

||f ||W k,∞(a,b;X) = max
0≤l≤k

||f (l)||L∞(a,b;X).

For s ∈ R, k ∈ N and p ∈ [1,∞] we also denote by

W k,p
s (a, b;H) = {f : (a, b) 7→ H; f (l)(·) es t ∈ Lp(a, b;X), l = 0, . . . , k}

the Banach space, endowed with norms ||f ||
W k,p

s
(a, b;X) = ||fes t||W k,p(a,b;X).

2 Solvability of the problems (Pε) and (P0)

The framework of our investigations will be determined by the following condi-
tions:

(B1) The operator B : D(B) ⊆ L2(Ω) 7→ L2(Ω) verifies the condition:

V ⊂ D(D) and there exists a constant L > 0 such that

|B(u1) − B(u2)| ≤ L ||u1 − u2||H2(Ω), ∀u1, u2 ∈ V ;

(B2) The operator B possesses the Fréchet derivative B′ in V , so that there

exist some constants L0 ≥ 0 and L1 ≥ 0 such that
∣∣(B′(u1) − B′(u2)

)
v
∣∣ ≤ L1 ||u1 − u2||H2(Ω) ||v||H2(Ω), ∀u1, u2, v ∈ V,
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∣∣B′(u) v
∣∣ ≤ L0 |v|, ∀u ∈ V, ∀v ∈ L2(Ω);

(B3) The operator B : D(B) ⊆ L2(Ω) → L2(Ω) is H2(Ω) local lipschitzian, i.e.

V ⊂ D(B) and for every R > 0 there exists L(R) ≥ 0 such that

|B(u1) − B(u2)| ≤ L(R) ||u1 − u2||H2(Ω), ∀ui ∈ V, ||ui||H2(Ω) ≤ R, i = 1, 2,

and B is Fréchet derivative of some convex and positive functional B with

V ⊂ D(B).
The hypothesis that operator B is Fréchet derivative of some convex and positive

functional implies, in particular, that the operator B is monotone and verifies the
condition

d

dt
B(u(t)) =

(
B(u(t)), u′(t)

)
, t ∈ [a, b] ⊂ R,

for u ∈ C([a, b], V ) ∩ C1([a, b], L2(Ω)) (see [13]).
(B4) The operator B possesses the Fréchet derivative B′ in V and for every

R > 0 there exists a constant L1(R) ≥ 0 such that

∣∣(B′(u1) − B′(u2)
)
v
∣∣ ≤ L1(R) ||u1 − u2||H2(Ω) ||v||H2(Ω), ∀u1, u2, v ∈ V,

||ui||H2(Ω) ≤ R, i = 1, 2.

Firstly we remind the definitions of solutions to the problems (Pε) and (P0) and
the existence theorems for solutions to the considered problems.

Definition 1. Let T > 0, f ∈ L2(0, T ;V ′) and B : D(B) ⊆ L2(Ω) → V ′. A

function u ∈ L2(0, T ;V
⋂

D(B)) with u′ ∈ L2(0, T ;L2(Ω)) and u′′ ∈ L2(0, T : V ′) is

called solution to the problem (Pε) if u satisfies the equality





ε〈u′′(t), η〉 + (u′(t), η) +
(
∆u(t),∆η

)
+ (B

(
u(t)

)
, η) = (f(t), η),

∀η ∈ V, a.e. t ∈ [0, T ],

u(0) = u0, u′(0) = u1.

(3)

Definition 2. Let T > 0, f ∈ L2(0, T ;V ′) and B : D(B) ⊆ L2(Ω) → V ′.

A function v ∈ L2(0, T ;V ∩ D(B)) with v′ ∈ L2(0, T ;V ′) is called solution to the

problem (P0) if v satisfies the equality

{
〈v′(t), η〉 +

(
∆v(t),∆η

)
+ (B

(
v(t)

)
, η) = (f(t), η),∀η ∈ V, a.e. t ∈ [0, T ],

v(0) = u0.
(4)

Remark 1. For u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;L2(Ω)), and u′′ ∈ L2(0, T ;V ′)
it follows that u ∈ C([0, T ];L2(Ω)) and u′ ∈ C([0, T ];V ′). Consequently, the initial

conditions from (3) are understood in the following sense:

|u(t) − u0| → 0, ||u′(t) − u1||V ′ → 0, as t → 0.
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Similarly, for v ∈ L2(0, T ;V ) with v′ ∈ L2(0, T : V ′), it follows that v ∈ C([0, T ];V ),
consequently, the initial conditions from (4) are understood in the following sense

|v(t) − u0| → 0 as t → 0.

Using the methods developed in [2] and [3], in [8] the following theorems are
proved.

Theorem 1. Let T > 0. Suppose that condition (B1) is fulfilled.

If u0 ∈ H4(Ω) ∩ V, u1 ∈ V , and f ∈ W 1,1(0, T ;L2(Ω)) then there ex-

its a unique solution to the problem (Pε) such that u ∈ W 2,∞(0, T ;L2(Ω)),
∆ u ∈ W 1,∞(0, T ;L2(Ω)), ∆2u ∈ L∞(0, T ;L2(Ω)).

The function t ∈ [0, T ) 7→ u′(t) ∈ L2(Ω) is derivable to the right and the

equalitiy

d+u′

dt
(t) = f(t0) − ∆2u(t) − B(u(t)) − u′(t), t ∈ [0, T ),

is true. The function t ∈ [0, T ] 7→ ∆2u(t) is weakly continuous in L2(Ω) and the

equality
d

dt

(
∆2u(t), u(t)

)
= 2

(
∆2u(t), u′(t)

)
, t ∈ [0, T ),

is true.

If, in addition, u1 ∈ H4(Ω) ∩ V , f(0) − B(u0) − ∆2u0 − u1 ∈ V ,

f ∈ W 2,1(0, T ;L2(Ω)) and condition (B2) is fulfilled, then u ∈ W 3,∞(0, T ;L2(Ω))
and ∆u ∈ W 2,∞(0, T ;L2(Ω)).

Theorem 2. Let T > 0. Suppose that condition (B3) is fulfilled.

If u0 ∈ H4(Ω) ∩ V, u1 ∈ V and f ∈ W 1,1(0, T ;L2(Ω), then there exists a unique

solution to the problem (Pε) such that u ∈ C2([0, T ];L2(Ω)), u′ ∈ C1([0, T ];V ),
∆2u ∈ C([0, T ];L2(Ω)).

If, in addition, u1 ∈ H4(Ω) ∩ V , f(0) − B(u0) − ∆2u0 − u1 ∈ V ,

f ∈ W 2,1(0, T ;L2(Ω)) and condition (B4) is fulfilled, then u ∈ W 3,∞(0, T ;L2(Ω)),
∆u ∈ W 2,∞(0, T ;L2(Ω)).

Theorem 3. Let T > 0. Suppose that condition (B1) is fulfilled.

If u0 ∈ H4(Ω) ∩ V and f ∈ W 1,1(0, T ;L2(Ω)), then there exits a unique solution to

the problem (P0). The function t ∈ [0, T ) 7→ v(t) ∈ L2(Ω) is derivable to the right,

verifies the equality

d+v

dt
(t) + ∆2v(t) + B(v(t)) = f(t), t ∈ [0, T ),

and the estimates

||v(t)||C([0,t];L2(Ω)) + ||v||L2(0,t;V ) + ||v′||L∞(0,t;L2(Ω)) + ||v′||L2(0,t;V ) ≤

≤ C M̃0(t) eγ t, ∀t ∈ [0, T ],

are true with C and γ depending on L, n, Ω, and

M̃0(t) = |u0| + |B(u0)| + |∆2u0| + ||f ||W 1,2(0,t;L2(Ω)).
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Remark 2. In the conditions of Theorem 3, v ∈ C([0, T ];L2(Ω)),
v′ ∈ L∞(0, T ;L2(Ω)), the term 〈v′(t), η〉 in (4) can be expressed in the form (v′(t), η).

Theorem 4. Let T > 0. Suppose that condition (B3) is fulfilled. If

u0 ∈ H4(Ω) ∩ V and f ∈ W 1,1(0, T ;L2(Ω)), then there exists a unique solution

to the problem (P0) such that v ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];V ) and the following

estimates

∣∣∣∣v
∣∣∣∣

C1([0, t];L2(Ω))
+ ||v||C([0, t];V ) + ||v′||L2(0,t;V ) ≤ C M̃1(t), ∀t ∈ [0, T ],

hold, where M̃1(t) =
∣∣u0

∣∣ +
∣∣∆2u0

∣∣ + ||f ||W 1, 1(0, t; H) + |B(0)| t.

3 A priori estimates for the solutions to the problem (Pε)

In this section we prove some a priori estimates for the solutions to the problem
(Pε), which are uniform relative to the small values of the parameter ε.

Firstly we remind the following theorems.

Theorem 5. [14] Let Ω ⊂ R
n be an open and bounded set with the compact

boundary of class C2. If u,∆u ∈ L2(Ω), then u ∈ H2(Ω) and there exists a constant

C0(n,Ω) such that

||u||H2(Ω) ≤ C0

(
||∆u||L2(Ω) + ||u||L2(Ω)

)
. (5)

Theorem 6. [1] Let Ω ⊂ R
n be an open and bounded set. For n > m l if

q ≤ m n

n − m l
and for n = m l, ∀q, the following inequality

||u||Lq(Ω) ≤ C(q,m, n,Ω) ||u||W l,m(Ω), ∀u ∈ W l,m(Ω)

is true.

For n < m l we have

max
x∈Ω

|u(x)| ≤ C(q,m, n,Ω) ||u||W l,m(Ω), ∀u ∈ W l,m(Ω).

In what follows, denote by u(t) = u(t, ·), u′(t) = ut(t, ·).
Lemma 1. Let u0 ∈ H4(Ω) ∩ V, u1 ∈ V , f ∈ W 1,2(0,∞;L2(Ω)) and condition

(B1) is fulfilled. Then there exist some positive constants C = C(n,Ω, L) and

γ(n,Ω, L) such that for every solution u to the problem (Pε) the following estimates

||u||C1([0,t];L2(Ω)) + ||∆u||W 1,∞(0,t;L2(Ω)) + ||u||W 2,2(0,t;L2(Ω)) ≤

≤ CM(t) eγ t, t ≥ 0, ε ∈
(
0,

1

2

]
, (6)

hold, where

M(t) = |∆2u0| + |u1| + |B(u0)| + ||f ||W 1,2(0,t;L2(Ω)). (7)
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If, in addition, condition (B2) is fulfilled and u0, u1, α ∈ H4 ∩ V ,

f ∈ W 2,2(0,∞;L2(Ω)), then there exist some positive constants γ = γ(n,Ω, L, L0, L1),
C = C(n,Ω, L, L0, L1) such that for the function z, defined by

z(t) = u′(t) + αe−t/ε, α = f(0) − u1 − ∆2u0 − B(u0), (8)

the following estimates

||z||W 1,∞(0,t;L2(Ω)) + ||z||W 1,∞(0,t;V ) + ||z||W 2,2(0,t;L2(Ω)) ≤

≤ C M0(t), t ≥ 0, ε ∈
(
0,

1

2

]
, (9)

are true with

M0(t) =
∣∣∆2u0

∣∣ +
∣∣∆2u1

∣∣ +
∣∣∆2α

∣∣ +
∣∣∣∣f

∣∣∣∣
W 2,2(0, t;L2(Ω))

+ M2(t) e2 γ t. (10)

If B = 0, then γ = 0 in (6) and in (9).

Proof. Proof of the estimate (6). In what follows let us agree to de-
note all constants depending on n, Ω, L, L0 and L1 by the same constant C.
Due to Theorem 1 we have that u ∈ W 2,∞(0, t;L2(Ω)), ∆u ∈ W 1,∞(0, t;L2(Ω)),
∆2u ∈ L∞(0, t;L2(Ω)) for every t > 0.

Let us denote by

E(u; t) = ε |u′(t)|2 + |u(t)|2 + 2 ε
(
u(t), u′(t)

)
+ |∆u(t)|2+

+2 (1 − ε)

t∫

0

|u′(s)|2 ds + 2

t∫

0

|∆u(s)|2 ds, t ≥ 0. (11)

The direct computations show that for every solution to the problem (Pε) the fol-
lowing equality

d

dt
E(u; t) = 2

(
f(t) − B(u), u(t) + u′(t)

)
, a.e. t ∈ [0,∞), (12)

is fulfilled. According to the condition (B1) and (5), we have

|B(u)| ≤ |B(0)| + L ||u(t)|| ≤ |B(0)| + LC0

(
|u(t)| + |∆u(t)|

)

and

|u(t)|2 + |∆u(t)|2 ≤

≤ 2
[
ε |u′(t)|2 + |u(t)|2 + 2 ε

(
u(t), u′(t)

)]
+ |∆u(t)|2 ≤ 2E(u; t), ε ∈

(
0,

1

2

]
.

Then, we get

∣∣∣
(
f(t) − B(u), u(t) + u′(t)

)∣∣∣ ≤
(
|f(t)| + |B(0)| + L ||u(t)||H2(Ω)

) (
|u(t)| + |u′(t)|

)
≤
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≤
[
|f(t)| + |B(0)| + 2

√
2 LC0 E1/2(u; t)

] (√
2 E1/2(u; t) + |u′(t)|

)
≤

≤ 1 − ε

2
|u′(t)|2 +

4

1 − ε

[
2E(u; t) +

(
|f(t)| + |B(0)| + 2

√
2 LC0 E1/2(u; t)

)2]
≤

≤ 1 − ε

2
|u′(t)|2 +

4

1 − ε

[
1 + 8L2 C2

0

]
E(u; t) + C (|f(t)| + |B(0)|)2 ≤

≤ γ E(u; t) + C (|f(t)| + |B(0)|)2+

+
1 − ε

2

d

dt

t∫

0

|u′(s)|2 ds, t ≥ 0, ε ∈
(
0,

1

2

]
, (13)

where γ = 8 (1 + 8L2 C2
0).

Therefore, from (12) it follows that

d

dt

[
E(u; t) − (1 − ε)

t∫

0

|u′(s)|2 ds
]
≤

≤ γ E(u; t) + C (|f(t)| + |B(0)|)2, t ≥ 0, ε ∈
(
0,

1

2

]
. (14)

As

E(u; t) ≤ 2E0(u; t), where E0(u; t) = E(u; t) − (1 − ε)

t∫

0

|u′(s)|2 ds, (15)

then from (14) we obtain

d

dt

[
e−2γ t E0(u; t)

]
≤ C (|f(t)| + |B(0)|)2 e−2 γ t, t ≥ 0, ε ∈

(
0,

1

2

]
.

Integrating this inequality, we get

E0(u; t) ≤ E0(u; 0) e2γ t + C

t∫

0

(|f(s)| + |B(0)|)2 e2 γ (t−s) ds, t ≥ 0, ε ∈
(
0,

1

2

]
.

From the last inequality it follows that

|u(t)| + |∆u(t)| + ||u′||L2(0,t;L2(Ω)) + ||∆u||L2(0,t;L2(Ω)) ≤

≤ C M(t) eγ t, t ≥ 0, ε ∈
(
0,

1

2

]
. (16)

To prove the estimate (6) let us denote by uh(t) = h−1(u(t + h) − u(t)), h > 0.
For every solution to the problem (Pε) the equality

d

dt
E(uh; t) = 2

(
Fh(t), u′

h(t) + uh(t)
)
, a.e. t ∈ [0,∞), (17)
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is true, where

Fh(t) = fh(t) − h−1
(
(Bu)(t + h) + (Bu)(t)

)
. (18)

Due to the condition (5), proceeding as in the proof of the estimate (13), we get

∣∣∣
(
Fh(t), u′

h(t) + uh(t)
)∣∣∣ ≤

(
|uh(t)| + |u′

h(t)|
) (

|fh(t)| + L ||uh(t)||H2(Ω)

)
≤

≤
(
|uh(t)| + |u′

h(t)|
) (

|fh(t)| + LC0

(
|uh(t)| + |∆uh(t)|

))
≤

≤ γ E(uh; t) + C |fh(t)|2 +
1 − ε

2

d

dt

t∫

0

|u′
h(s)|2 ds, t ≥ 0, ε ∈

(
0,

1

2

]
. (19)

Consequently,

d

dt

[
e−2γ t E0(uh; t)

]
≤ C |fh(t)|2 e−2 γ t, t ≥ 0, ε ∈

(
0,

1

2

]
.

Integrating the last equality on (0, t), we get

E0(uh; t) ≤ E0(uh; 0) e2γ t + C

t∫

0

|fh(s)|2 e2 γ (t−s) ds, t ≥ 0, ε ∈
(
0,

1

2

]
. (20)

Since for 1 ≤ p < ∞, k ∈ N and u ∈ W 1,p(0, T ;Hk(Ω)) the inequality

∫ t

0
||uh(τ)||p

Hk(Ω)
dτ ≤

∫ t

0
||u′(τ)||p

Hk(Ω)
dτ, t ∈ [0,∞), (21)

is true (see [2]), then

∫ t

0
|fh(s)|2 ds ≤

∫ t

0
|f ′(s)|2 ds, t ∈ [0,∞). (22)

As u′(0) = u1, εu′′(0) = f(0) − u1 − ∆2u0 − B(u0), then

E0(u
′, 0) ≤ C M(t). (23)

Using the estimates (22), (23) and passing to the limit in the inequality (20) as
h → 0 we obtain the estimate

|u′(t)| + |∆u′(t)| + ||u′′||L2(0,t;L2(Ω)) + ||∆u′||L2(0,t;L2(Ω)) ≤

≤ C M(t) eγ t, t ≥ 0, ε ∈
(
0,

1

2

]
. (24)

Finally, from (16) and (24) the inequality (6) follows.
It is easy to see from the proof, that in the case of B = 0, γ = 0.



LIMITS OF SOLUTIONS ... 85

Proof of the estimate (9). Under the conditions of the Lemma, if u is a solution

to the problem (Pε), then
(
B(u)

)′ ∈ W 1,1(0, t;L2(Ω)) for every t > 0 and ε ∈
(
0,

1

2

]
.

Indeed, due to the conditions (B2) and (5), we have

∣∣(B(u(t))
)′∣∣ =

∣∣B′((u(t))u′(t)
∣∣ ≤ L0

∣∣u′(t)
∣∣, t ≥ 0, (25)

and for uh(t) = h−1(u(t + h) − u(t)), h > 0 and t > 0, the estimate

∣∣∣h−1
((

B′(u(t))
)
u′(t)

)
h

∣∣∣ ≤

≤
∣∣∣h−1

(
B′

(
u(t + h)

)
− B′

(
u(t)

))
u′(t + h)

∣∣∣ +
∣∣∣B′(u(t))u′

h(t)
∣∣∣ ≤

≤ L1 C2
0

(∣∣∆uh(t)
∣∣ +

∣∣uh(t)
∣∣
) (

|∆u′(t + h)|+ |u′(t + h)|
)

+ L0 |u′
h(t)|, t ≥ 0, (26)

is valid.

Using the estimate (6) and inequality (21), from (25) and (26) we deduce that(
B(u)

)′ ∈ W 1,2(0, t;L2(Ω)) and

∣∣∣
∣∣∣
((

B′(u(t))
))′∣∣∣

∣∣∣
L2(0,T ;L2(Ω))

≤

≤ C M(t) eγ t
(
||∆u′||L2(0,t;L2(Ω)) + ||u′||L2(0,t;L2(Ω))

)
+ L0 ||u′′||L2(0,t;L2(Ω)),

≤ C M2(t) e2 γ t, t ≥ 0, ε ∈
(
0,

1

2

]
.

Therefore,
(
B(u)

)′ ∈ W 1,1(0, t;L2(Ω)) for ε ∈
(
0,

1

2

]
and every t > 0.

If u1 + α ∈ H4(Ω) ∩ V and f ∈ W 2,1(0, t;L2(Ω)), then, in virtue of Theorem 1,
the function z, defined by (8), is the solution in L2(Ω) to the problem

{
ε z′′(t) + z′(t) + ∆2z(t) = F(t, ε), a. e. t ≥ 0,
z(0) = u1 + α, z′(0) = 0,

(27)

with

F(t, ε) = f ′(t) −
(
B

(
u(t)

))′
+ e−t/ε ∆2α (28)

and z possesses the properties:

z ∈ W 2,∞(0, T ;L2(Ω)), ∆z ∈ W 1,∞(0, T ;L2(Ω)), ∆2z ∈ L∞(0, T ;L2(Ω)).

Furthermore

||F(t, ε)||L2(0,t;L2(Ω)) ≤ C
(
||f ||W 2,2(0,t;L2(Ω)) + M2(t) e2 γ t

)
, t ≥ 0, ε ∈

(
0,

1

2

]
.
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In the same way, as the estimate (16) was obtained in the case B = 0, we get
the estimate

|z(t)| + |∆z(t)| + ||z′||L2(0,t;L2(Ω)) + ||∆z||L2(0,t;L2(Ω)) ≤

≤ C M0(t), t ≥ 0, ε ∈
(
0,

1

2

]
. (29)

Also, similarly as the estimate (24) was proved in the case B = 0, we prove the
estimate

|z′(t)| + |∆z′(t)| + ||z′′||L2(0,t;L2(Ω)) + ||∆z′||L2(0,t;L2(Ω)) ≤

≤ C M0(t), t ≥ 0, ε ∈
(
0,

1

2

]
. (30)

Finally, from (29) and (30) the inequality (9) follows. Lemma 1 is proved.
Lemma 2. Suppose the condition (B3) is fulfilled. If u0 ∈ H4(Ω) ∩ V ,

u1 ∈ V and f ∈ W 1,2(0,∞;L2(Ω)), then for every solution u to the problem (Pε)
the following estimates

||u||C1([0, t];L2(Ω)) + ||∆u||C1([0, t];L2(Ω)) +
∣∣∣∣∆u′

∣∣∣∣
L2(0,t;L2(Ω))

+ |B(u)|1/2 ≤

≤ C(m)M1(t) eγ(m) t, t ≥ 0, ε ∈
(
0,

1

2

]
. (31)

are true, where

M1(t) =
∣∣∆2u0

∣∣ +
∣∣∆u1

∣∣ +
∣∣∣∣f

∣∣∣∣
W 1,2(0, t;L2(Ω))

+ |B(u0)|1/2 (32)

and

m = |∆u0| + |u1| + |B(u0)|1/2 + ||f ||L2(0,∞;L2(Ω)).

If, in addition, condition (B4) is fulfilled and u0, u1, α ∈ H4(Ω) ∩ V and

f ∈ W 2,2(0,∞;L2(Ω)), then for the function z, defined by (8), the estimates

||∆z||C([0, t];L2(Ω)) + ||z′||C([0, t];L2(Ω)) +
∣∣∣∣∆z′

∣∣∣∣
L2(0, t; L2(Ω))

≤

≤ C M2(t) eγ(m) t, t ≥ 0, ε ∈
(
0,

1

2

]
. (33)

are true, where C = C(m, ||B′(0||) and

M2(t) = M2
1 (t) e2 γ(m) t + ||f ||W 2,2(0,t;L2(Ω)) + |∆2α|. (34)

Proof. Proof of the estimate (31). Due to Theorem 2 we have that
u ∈ C2([0, T ];L2(Ω)), u′ ∈ C1([0, t];V ), ∆2u ∈ C([0, t];L2(Ω)) for every t > 0.

Denote by

E1(u; t) = ε |u′(t)|2 + |∆u(t)|2 + 2

t∫

0

|u′(s)|2ds + 2B(u(t)).
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Then for every solution u to the problem (Pε), we have

d

dt
E1(u; t) = 2

(
f(t), u′(t)

)
, t ≥ 0.

Integrating this inequality, we obtain

E1(u; t) ≤ E1(u; 0) + 2

t∫

0

|f(s)| |u′(s)| ds ≤
t∫

0

|f(s)|2 ds +

t∫

0

|u′(s)|2 ds, t ≥ 0.

Therefore, we get the estimate

∣∣∣∣∆u
∣∣∣∣

C([0,t;L2(Ω))
+ ||u′||L2(0,t; L2(Ω)) +

(
B

(
u(t)

))1/2
≤

≤ C
(
E

1/2
1 (u, 0) + ||f ||L2(0,t;L2(Ω)) + |B(u0)|1/2

)
, t ≥ 0, ε ∈ (0, 1].

As ||u||L2(Ω) ≤ C(n,Ω) ||∆u||L2(Ω) for u ∈ V , then from the last inequality the
estimate

∣∣∣∣u
∣∣∣∣

C([0,t];L2(Ω))
+

∣∣∣∣∆u
∣∣∣∣

C([0,t];L2(Ω))
+ ||u′||L2(0,t;L2(Ω)) +

(
B

(
u(t)

))1/2
≤

≤ C m, t ≥ 0, ε ∈ (0, 1), (35)

follows.
Let uh(t) = h−1

(
u(t + h) − u(t)

)
, h > 0, t ≥ 0 and the functional E(u, t) is

defined by (11). For every solution u to the problem (Pε) the equality (17) is true
with Fh(t) defined by (18).

Due to (5), conditions (B3) and the estimate (35), proceeding as in the proof of
the estimate (19), we obtain

∣∣∣
(
Fh(t), u′

h(t) + uh(t)
)∣∣∣ ≤

(
|uh(t)| + |u′

h(t)|
) (

|fh(t)| + L(m) ||uh(t)||H2(Ω)

)
≤

≤
(
|uh(t)| + |u′

h(t)|
) (

|fh(t)| + L(m)
(
|uh(t)| + |∆uh(t)|

))
≤

≤ γ(m)E(uh; t) + C(m) |fh(t)|2 +
1 − ε

2

d

dt

t∫

0

|u′
h(s)|2 ds, t ≥ 0, ε ∈

(
0,

1

2

]
.

Consequently, for E0(u; t), defined by (15), we have

d

dt

[
e−2γ(m) t E0(uh; t)

]
≤ C(m) |fh(t)|2 e−2 γ t, t ≥ 0, ε ∈

(
0,

1

2

]
.
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Integrating the last equality on (0, t), we get

E0(uh; t) ≤ E0(uh; 0) e2 γ(m) t +C(m)

t∫

0

|fh(s)|2 e2 γ(m) (t−s) ds, t ≥ 0, ε ∈
(
0,

1

2

]
.

In what follows, proceeding as in the proof of the estimate (24), we get the
estimate

||u′||C([0,t];L2(Ω)) + ||∆u′||C([0,t];L2(Ω)) + ||∆u′||L2(0,t;L2(Ω)) ≤

≤ C(m)M1(t) eγ(m) t, t ≥ 0, ε ∈
(
0,

1

2

]
, (36)

with M1(t) from (32). Finally, from (35) and (36) the inequality (31) follows.
Proof of the estimate (33). Under the conditions of Lemma we have(

B(u)
)′ ∈ W 1,1(0, t;L2(Ω)) for every t > 0. Indeed, due to Thorem 2,

u ∈ W 3,∞(0, t;L2(Ω)) and ∆u ∈ W 2,∞(0, t;L2(Ω)) for every t > 0. Therefore,
using the condition (B4) and the estimate (31), we deduce

∣∣(B(u(t))
)′∣∣ =

∣∣B′(u(t))u′(t)
∣∣ ≤ C

(
L1(m) + ||B′(0)||

)
||u′(t)||H2(Ω), t > 0.

For h > 0, t > 0 and uh(t) = h−1
(
u(t + h) − u(t)

)
we have

∣∣∣h−1
((

B(u(t))
)′)

h

∣∣∣ ≤

≤
∣∣∣h−1

(
B′

(
u(t + h)

)
− B′

(
u(t)

))
u′(t + h)

∣∣∣ +
∣∣∣B′

(
u(t)

)
u′

h(t)
∣∣∣ ≤

≤ L1(m)M1(t) eγ(m) t ||uh(t)||H2(Ω) + C
(
L1(m) + ||B′(0)||

)
||u′

h||H2(Ω) ≤

≤ C
(
L1(m)M1(t) eγ(m) t + ||B′(0)||

) (
||uh(t)||H2(Ω) + ||u′

h||H2(Ω)

)
, t > 0. (37)

In virtue of (22), (31) and (37), we conclude that
((

B′(u)
))′

∈ W 1,2(0, t;L2(Ω)) for

every t > 0 and ∣∣∣
∣∣∣
((

B′(u(t))
))′∣∣∣

∣∣∣
L2(0,t;L2(Ω))

≤

≤ C(m, ||B′(0||)M2
1 (t) eγ(m) t, t > 0, ε ∈

(
0,

1

2

]
. (38)

From (38) it follows that the function F , which is defined by (28), belongs to
W 1,1(0, t;L2(Ω)), for every t > 0, and

||F(t, ε)||L2(0,t;L2(Ω)) ≤ C(m, ||B′(0||)M2(t) eγ(m) t, t ≥ 0, ε ∈
(
0,

1

2

]
. (39)

According to Theorem 2, for every t > 0, the function z possesses the following
properties: z ∈ W 2,∞(0, t;L2(Ω)), ∆z ∈ W 1,∞(0, t;L2(Ω)), ∆2z ∈ L∞(0, t;L2(Ω)).
The estimate (33) is obtained in the same way as the estimate (9) was obtained,
using (31) and (39). Lemma 2 is proved.
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4 Relationship between solutions to the problems (Pε) and (P0) in
the linear case

In this section we establish the relationship between solutions to the problems
(Pε) and (P0) in the linear case, i.e. in the case when the term B(u) in the problems
(Pε) and (P0) is missing. This relationship was inspired by the work [12]. Firstly
we give some properties of the kernel K(t, τ, ε) of the transformation which realizes
this connection.

For ε > 0 denote by

K(t, τ, ε) =
1

2
√

π ε

(
K1(t, τ, ε) + 3K2(t, τ, ε) − 2K3(t, τ, ε)

)
,

where

K1(t, τ, ε) = exp
{3 t − 2 τ

4 ε

}
λ
(2 t − τ

2
√

ε t

)
, K2(t, τ, ε) = exp

{3 t + 6 τ

4 ε

}
λ
(2 t + τ

2
√

ε t

)
,

K3(t, τ, ε) = exp
{τ

ε

}
λ
( t + τ

2
√

ε t

)
, λ(s) =

∞∫

s

e−η2
dη.

The properties of the kernel K(t, τ, ε) are collected in the following lemma.
Lemma 3 [9] The function K(t, τ, ε) is the solution to the problem





Kt(t, τ, ε) = εKττ (t, τ, ε) − Kτ (t, τ, ε), ∀t > 0, ∀τ > 0,

εKτ (t, 0, ε) − K(t, 0, ε) = 0, ∀t ≥ 0

K(0, τ, ε =
1

2 ε
exp

{
− τ

2 ε

}
, ∀τ ≥ 0,

from C([0,∞)× [0,∞))∩C2((0,∞)× (0,∞)) and possesses the following properties:

(i) K(t, τ, ε) > 0, ∀t ≥ 0, ∀τ ≥ 0, and

∫ ∞

0
K(t, τ, ε) dτ = 1, ∀t ≥ 0;

(ii) Let q ∈ [0, 1]. Then

∫ ∞

0
K(t, τ, ε) |t − τ |q dτ ≤ C

(
ε +

√
ε t

)q
, ∀ε > 0, ∀t ≥ 0;

(iii) Let γ > 0 and q ∈ [0, 1]. There exist C1, C2 and ε0, all of them positive and

depending on γ and q, such that the following estimates are fulfilled:

∫ ∞

0
K(t, τ, ε) eγτ |t − τ |q dτ ≤ C1 eC2t εq/2, ∀ε ∈ (0, ε0], ∀t > 0;

(iv) Let p ∈ (1,∞] and f : [0, ∞) → H, f(t) ∈ W 1,p(0,∞;H). Then

∣∣∣f(t)−
∫ ∞

0
K(t, τ, ε)f(τ)dτ

∣∣∣ ≤ C(p) ‖f ′‖Lp(0,∞;H)

(
ε+

√
ε t

) p−1
p , ∀ε > 0, ∀t ≥ 0.
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Theorem 7.[9] Suppose that f ∈ L∞
γ (0,∞;L2(Ω)), u ∈ W 2,∞

γ (0,∞;L2(Ω))

∩L∞
γ (0,∞;V ) and ∆2u ∈ L2,∞

γ (0,∞ : V ′) is the solution to the problem

{
ε(u′′(t), η) + (u′(t), η) +

(
∆u(t),∆η

)
= (f(t), η), ∀η ∈ V, a. e. t ∈ [0,∞),

u(0) = u0, u′(0) = u1,

then for 0 < ε < (4 γ)−1 the function

w0(t) =

∞∫

0

K(t, τ, ε)u(τ)dτ

is solution to the problem

{
(w′

0(t), η) +
(
∆w0(t),∆η

)
= (F0(t, ε)u1, η), ∀η ∈ V, a.e. t ∈ [0,∞),

w0 = ϕε,

where

F0(t, ε) = f0(t, ε)u1 +

∞∫

0

K(t, τ, ε) f(τ)dτ,

f0(t, ε) =
1√
π

[
2 exp

{ 3 t

4 ε

}
λ
(√

t

ε

)
− λ

(1

2

√
t

ε

)]
, ϕε =

∞∫

0

e−τu(2 ε τ)dτ.

Moreover, w0 ∈ W 2,∞
loc (0,∞;L2(Ω)) ∩ L∞

loc(0,∞;V ).

5 Behaviour of solutions to the problem (Pε)

In this section we prove the main results concerning the behavior of the solutions
to the problem (Pε) as ε → 0 relative to solution to the corresponding unperturbed
problem (P0).

Theorem 8. Let T > 0 and p ∈ [2,∞]. Assume that (B1) is fulfilled. If

u0 ∈ H4(Ω) ∩ V , u1 ∈ V and f ∈ W 1,p(0, T ;L2(Ω)), then there exist constants

C = C(L, T, p,Ω, n) > 0 and ε0 = ε0(L, p,Ω, n) such that

||u − v||C([0,T ];L2(Ω)) ≤ C M(T ) εβ , t ∈ [0, T ], ε ∈ (0, ε0], (40)

||u − v||L∞(0,T ;V ) ≤ C M(T ) εβ , t ∈ [0, T ], ε ∈ (0, ε0], (41)

where u and v are solutions to the problems (Pε) and (P0), respectively,

M(T ) = |∆2u0| + ||u1|| + |B(u0)| + ||f ||W 1,p(0,T ;L2(Ω)), (42)
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β =

{
1/2 if f = 0,

(p − 1)/(2 p) if f 6= 0.

If, in addition, condition (B2) is fulfilled and u0, u1, α ∈ H4(Ω) ∩ V and

f ∈ W 2, p(0, T ;L2(Ω)), then there exist constants ε0 = ε0(L,L0), ε0 ∈ (0, 1),
γ = γ(L,L0, L1), C = C(p, L,L0, L1) such that

||u′ − v′ + αe−t/ε||C([0, T ] ;L2(Ω)) + ||u′ − v′ + αe−t/ε||L2(0, T ;H2(Ω)) ≤

≤ C M0(T ) eγ t εβ , t ≥ 0, ε ∈ (0, ε0], (43)

with M0(T ) defined by (10).

Proof. In this section, we agree to denote by C all constants depending on
T, p, Ω, n, L, L0 and L1. For every f ∈ W k,p(0, T ;L2(Ω)) then there exists the
extension f̃ : [0,∞) 7→ L2(Ω) such that

||f̃ ||W k,p(0,∞;L2(Ω)) ≤ C(T, p) ||f ||W k,p(0,T ;L2(Ω)). (44)

If we denote by Ũ the unique solution to the problem (Pε), defined on (0,∞)
instead of (0, T ) and f̃ instead of f , then, from Theorem 1 and Lemma 1, it follows
that Ũ ∈ W 2,∞(0,∞;L2(Ω)), Ũ ′ ∈ L2(0,∞;L2(Ω)), ∆2Ũ ∈ L∞(0,∞;L2(Ω)). Due
to the estimates (24), for Ũ we obtain the following estimates

∣∣∣∣Ũ ′
∣∣∣∣

C([0,t];L2(Ω))
+

∣∣∣∣∆Ũ ′
∣∣∣∣

L∞(0,t;L2(Ω))
≤ C M(T ) eγt, t ≥ 0, ε ∈

(
0,

1

2

]
, (45)

with M(T ) from (42) and γ from (13).

By Theorem 7, the function W defined by W (t) =

∫ ∞

0
K(t, τ, µ) Ũ (τ) dτ, is a

solution to the problem

{
W ′(t) + ∆2W (t) = F (t, ε), a.e. t > 0, in L2(Ω),

W (0) = ϕε,
(46)

where

F (t, ε) = f0(t, ε)u1 +

∞∫

0

K(t, τ, ε) f̃ (τ) dτ −
∞∫

0

K(t, τ, ε)B(Ũ (τ)) dτ,

ϕε =

∞∫

0

e−τ Ũ(2 ετ) dτ.

Denote by R(t, ε) = Ṽ (t) − W (t), where Ṽ is the solution to the problem (P0) with
f̃ instead of f, T = ∞ and W is the solution to the problem (46). Then, due to



92 A. PERJAN, G. RUSU

Theorem 2, R(·, ε) ∈ W 2,∞
loc (0,∞; L2(Ω))∩L2(0,∞;V ) and R is a solution in L2(Ω)

to the problem

{
R′(t, ε) + ∆2R(t, ε) + B

(
Ṽ (t)

)
− B

(
W (t)

)
= F(t, ε), a. e. t > 0,

R(0, ε) = u0 − W (0),
(47)

where

F(t, ε) = f̃(t) −
∫ ∞

0
K(t, τ, ε)f̃ (τ) dτ − f0(t, ε)u1+

+B
(
Ũ(t)

)
− B

(
W (t)

)
+

∫ ∞

0
K(t, τ, ε)

[
B

(
Ũ(τ)

)
− B

(
Ũ(t)

)]
dτ. (48)

In what follows, we need the following two Lemmas, which will be proved after
the proof of the estimates (40) and (41).

Lemma 4. Assume the conditions of Theorem 8 are fulfilled. Then there exist

constants C = C(L,Ω, n), C0 = C0(L,Ω, n) and ε0 = ε0(L,Ω, n) such that following

estimates

|Ũ (t) − W (t)| ≤ C M(T ) ε1/2 eC0 t, t ≥ 0, ε ∈ (0, ε0], (49)

||Ũ(t) − W (t)||L∞(0,t;V ) ≤ C M(T ) ε1/2 eC0 t, t ≥ 0, ε ∈ (0, ε0], (50)

are true with M(T ) from (42).

Lemma 5. Assume the conditions of Theorem 8 are fulfilled. Then there exist

constants C = C(L,Ω, n), c0 = c0(L,Ω, n) and ε0 = ε0(L,Ω, n) such that for the

solution to the problem (47) the following estimates

||R||C([0, t]; L2(Ω)) + ||∆R||L2(0,t;L2(Ω)) ≤

≤ C M(T ) ec0 t ε(p−1)/(2 p), t ≥ 0, ε ∈ (0, ε0], (51)

||R||L∞(0, t;H2(Ω)) ≤ C M(T ) ec0 t ε(p−1)/(2 p), t ≥ 0, ε ∈ (0, ε0], (52)

are true with M(T ) from (42).

From the last two lemmas we deduce that

||Ũ − Ṽ ||C([0,t];L2(Ω)) ≤ ||Ũ − W ||C([0,t];L2(Ω)) + ||R||C([0,t];L2(Ω)) ≤

≤ C M(T ) eC0 t εβ , t ≥ 0, ε ∈ (0, ε0].

Since u(t) = Ũ(t), v(t) = Ṽ (t), for all t ∈ [0, T ], then we have

|u(t) − v(t)| =
∣∣Ũ(t) − Ṽ (t)

∣∣ ≤ C M(T ) εβ , t ∈ [0, T ], ε ∈ (0, ε0]. (53)

Concequently, from (53) the estimate (40) follows. Similarly, using (50) and (52),
we obtain the estimate (41).



LIMITS OF SOLUTIONS ... 93

Proof of Lemma 4. Using the properties (i), (ii) and (iii) from Lemma 3, the
estimate (45) and the Hölder’s inequality, we get

|Ũ(t) − W (t)| ≤
∞∫

0

K(t, τ, ε)
∣∣Ũ(t) − Ũ(τ)

∣∣ dτ ≤

≤
∞∫

0

K(t, τ, ε)
∣∣∣

s∫

τ

∣∣Ũ ′(ξ)
∣∣ dξ

∣∣∣ dτ ≤ C M(T )

∞∫

0

K(t, τ, ε)
∣∣∣

t∫

τ

eγ ξ dξ
∣∣∣ dτ ≤

≤ C M(T )

∞∫

0

K(t, τ, ε) |τ − t|
[
eγ t + eγ τ

]
dτ ≤

≤ C M(T )
[
eγ t

∞∫

0

K(t, τ, ε) |τ − t| dτ +

∞∫

0

K(t, τ, ε) |τ − t| eγ τ dτ
]
≤

≤ C M(T ) eC2 t ε1/2, t ≥ 0, ε ∈ (0, ε0]. (54)

Thus, the estimate (49) is proved.
In the same way, using properties (i), (i) and (iii) from Lemma 3, the estimate

(45) and the Hölder’s inequality, we get

∣∣∆Ũ(t) − ∆W (t)
∣∣ ≤

∞∫

0

K(t, τ, ε)
∣∣∆Ũ(t) − ∆Ũ(τ)

∣∣ dτ ≤

≤
∞∫

0

K(t, τ, ε)
∣∣∣

s∫

τ

∣∣∆Ũ ′(ξ)
∣∣ dξ

∣∣∣ dτ ≤ C M(T ) eC2 t ε1/2, t ≥ 0, ε ∈ (0, ε0]. (55)

Due to Theorem 5, we have that

||Ũ − W ||L∞(0,t;V ) = ||Ũ − W ||L∞(0,t;H2(Ω)) ≤

≤ C
[
||Ũ − W ||L∞(0,t;L2(Ω)) + ||∆Ũ − ∆W ||L∞(0,t;L2(Ω))

]
.

From the last inequality, using (49) and (55), we get (50). Lemma 4 is proved.
Proof of Lemma 5. Proof of the estimate (51). Multiplying scalarly in L2(Ω)

the equation (47) by R and using the condition (B1) and Theorem 5 we obtain the
inequality

d

dt
|R(t, ε)|2 + 2 |∆R(t, ε)|2 ≤ 2 |F(t, ε)| |R(t, ε)| + 2L ||R(t, ε)||H2(Ω) |R(t, ε)| ≤
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≤ 2 |F(t, ε)| |R(t, ε)| + C0 L
(
|R(t, ε)| + |∆R(t, ε)|

)
|R(t, ε)|, t ≥ 0,

from which it follows that

d

dt
|R(t, ε)|2 + |∆R(t, ε)|2 ≤ 2 |F(t, ε)|2 + 2 γ1 |R(t, ε)|2, t ≥ 0,

or
d

dt

[
|R(t, ε)|2 e−2 γ1 t

]
+ |∆R(t, ε)|2 e−2 γ1 t ≤ 2 |F(t, ε)|2 e−2 γ1 t, t ≥ 0,

with some γ1 depending on L and constant C0 from Theorem 5. Integrating on (0, t)
the last equality, we deduce

|R(t, ε)| + ||∆R(·, ε)||L2(0,t;L2(Ω)) ≤

≤ C
[
|R(0, ε)| + ||F(·, ε)|L2(0,t;L2(Ω))

]
eγ1 t, ∀t ≥ 0, (56)

where F(t, ε) is defined by (48). In what follows, we will estimate the right side of
(56). Using (45), we get

∣∣R(0, ε)
∣∣ ≤

∞∫

0

e−τ
∣∣∣Ũ(2ε τ) − u0

∣∣∣ dτ ≤
∞∫

0

e−τ

2 ε τ∫

0

∣∣Ũ ′(ξ)
∣∣ dξ dτ ≤

≤ C M(T ) ε

∞∫

0

τ e−τ dτ = C M(T ) ε, ε ∈
(
0,

1

2

]
. (57)

Using the property (iv) from Lemma 3 and (44), we deduce

∣∣∣f̃(t) −
∞∫

0

K(t, τ, ε)f̃ (τ) dτ
∣∣∣ ≤ C ‖f̃ ′‖Lp(0,∞ ;L2(Ω)) (ε +

√
ε t)(p−1)/p ≤

≤ C ‖f ′‖Lp(0,T ;L2(Ω))

(
ε +

√
ε t)

)(p−1)/p
, t ≥ 0, ε > 0. (58)

Since eξλ(
√

ξ) ≤ C, ∀ξ ≥ 0, then the following estimates

t∫

0

exp
{ 3ξ

4 ε

}
λ
(√

ξ

ε

)
dξ ≤ C ε

∞∫

0

e−ξ/4 dξ ≤ C ε, t ≥ 0, ε > 0,

s∫

0

λ
(1

2

√
ξ

ε

)
dξ ≤ ε

∫ ∞

0
λ
(1

2

√
ξ
)

dξ ≤ C ε, t ≥ 0, ε > 0

hold. Consequently

∣∣∣
t∫

0

f0(ξ, ε)u1dξ
∣∣∣ ≤ C ε|u1|, t ≥ 0, ε > 0. (59)
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Using (B1), (5) and the estimates (49) and (50), we get the following estimates

∣∣B(Ũ(t)) − B(W (t))
∣∣ ≤

≤ L ‖Ũ(t) − W (t)||H2(Ω) ≤ C M(T ) ε1/2 ec0 t, t ≥ 0, ε ∈ (0, ε0]. (60)

Similarly as the estimate (54) was obtained, we get

∞∫

0

K(t, τ, ε)
∣∣B(Ũ(τ)) − B(Ũ(t))

∣∣ dτ ≤ C M(T ) eC2 t ε1/2, t ≥ 0, ε ∈ (0, ε0].

(61)
Using (58), (59), (60) and (61), from (48) we get

∣∣F(τ, ε)
∣∣ ≤ C M(T ) eC2 t ε(p−1)/(2 p), t ≥ 0, ε ∈ (0, ε0].

Consequently,

( t∫

0

∣∣F(τ, ε)
∣∣2 dτ

)1/2
≤ C M(T ) eC2 t ε(p−1)/(2 p), t ≥ 0, ε ∈ (0, ε0]. (62)

From (56), using (57) and (62) we get the estimate (51).
Proof of the estimate (52). From Theorem 3 it follows that

R ∈ W 1,2
loc (0, t;V ) ∩ W 1,∞

loc (0, t;L2(Ω)) and ∆2R ∈ L2
loc(0,∞;L2(Ω)). Moreover the

function t 7→ (∆2R(t, ε), R(t, ε)) is an absolutely continuous function on [0, T ] for
every T > 0 and

d

dt
(∆2R(t, ε), R(t, ε)) = 2(∆2R(t, ε), R′(t, ε)), a. e. t > 0.

Multiply the equation (47) by ∆2R(t, ε) and then integrate on (0, t) to get

∣∣∆R(t, ε
∣∣2 + 2

t∫

0

∣∣∆2R(s, ε)
∣∣2 ds =

=
∣∣∆R(0, ε)

∣∣2 + 2

t∫

0

(
F(s, ε) − B

(
Ṽ (s)

)
+ B

(
W (s)

)
,∆2R(s, ε)

)
ds, t ≥ 0.

Therefore,

|∆R(t, ε)|2 +

t∫

0

∣∣∆2R(s, ε)
∣∣2 ds ≤

≤
∣∣∆R(0, ε)

∣∣2 +

t∫

0

[∣∣F(s, ε)
∣∣2 +

∣∣B
(
Ṽ (s)

)
− B

(
W (s)

)∣∣2
]
ds, t ≥ 0.
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From the last inequality, using (62) and (51), we obtain

∣∣∆R(t, ε
∣∣ + ||∆2R||L2(0,t;L2(Ω)) ≤

≤ C
[
|∆R(0, ε)| + ||F||L2(0,t;L2(Ω)) + L ||R||L2(0,t;L2(Ω))

]
≤

≤ C
[
|∆R(0, ε)| + M(T ) eC2 t e(p−1)/(2 p)

]
, t > 0, ε ∈ (0, ε0]. (63)

Using (45), we get

|∆R(0, ε)| ≤
∞∫

0

e−s |∆(Ũ(2 ε s) − u0))| ds ≤

≤
∞∫

0

e−s

2 ε s∫

0

|∆Ũ ′(τ)| dτ ds ≤ C M(T ) ε, ε ≤ γ

4
. (64)

From (63) and (64) it follows that

∣∣∆R(t, ε
∣∣ ≤ C M(T ) eC2 t e(p−1)/(2 p), t > 0, ε ∈ (0, ε0]. (65)

As, due to Theorem 5, we have that

||R||L∞(0,t;V ) = ||R||L∞(0,t;H2(Ω)) ≤ C0

[
||R||L∞(0,t;L2(Ω)) + ||∆R||L∞(0,t;L2(Ω))

]
,

then using (51) and (65) we get (52). Lemma 5 is proved.
Proof of the estimate (43). According to Lemma 1, the function z̃, defined as

z̃(t) = Ũ ′(t) + αe−t/ε, α = f̃(0) − u1 − ∆2u0 − B(u0),

is solution to the problem (27) with

F(t, ε) = f̃ ′(t) −
(
B

(
Ũ(t)

))′
+ e−t/ε ∆2α

and z̃ satisfies the following estimate

||z̃||W 1,∞(0,t;L2(Ω)) + ||z̃||W 1,∞(0,t;V ) + ||z̃||W 2,2(0,t;L2(Ω)) ≤

≤ C M0(t), t ≥ 0, ε ∈
(
0,

1

2

]
, (66)

wherein, due to inequality (44), with the same M0(t) from (10).
As z̃′(0) = 0, then according to Theorem 7, the function

w1(t) =

∞∫

0

K(t, τ, ε) z̃(τ) dτ,
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is solution to the following problem:

{
w′

1(t) + ∆2w1(t) = F1(t, ε), a. e. t > 0, in L2(Ω),
w1(0) = ϕ1ε,

for 0 < ε ≤ ε0, where

F1(t, ε) =

∞∫

0

K(t, τ, ε)f̃ ′(τ) dτ −
∞∫

0

K(t, τ, ε)
(
B(Ũ)

)′
(τ) dτ+

+

∞∫

0

K(t, τ, ε) e−τ/ε dτ ∆2α, ϕ1ε =

∞∫

0

e−τ z̃(2ετ) dτ.

Using the properties (i), (ii) and (iii) from Lemma 3 and the estimate (66) and
proceeding as in the proof of estimate (54), we get

∣∣z̃(t) − w1(t)
∣∣ ≤

∞∫

0

K(t, τ, ε)
∣∣z̃(t) − z̃(τ)

∣∣ dτ ≤
∞∫

0

K(t, τ, ε)
∣∣∣

t∫

τ

∣∣z̃ ′(s)
∣∣ ds

∣∣∣ dτ ≤

≤ C M0(T ) eC2 t ε1/2, t ≥ 0, ε ∈ (0, ε0]. (67)

In the same way, using (66), we obtain the estimate

∣∣∣∣z̃ − w1

∣∣∣∣
L∞(0, t;H2(Ω))

≤ C M0(T ) eC2 t ε1/2, t ≥ 0, ε ∈ (0, ε0]. (68)

Let v1(t) = v′(t), where v is solution to the problem (P0) with f̃ instead of f,
T = ∞.

Denote by R1(t, ε) = v1(t) − w1(t). Then the function R1(t, ε) is solution to the
problem

{
R′

1(t, ε) + ∆2R1(t, ε) = F1(t, ε), a. e. t > 0, ı̂n L2(Ω)
R1(0, ε) = R10 =: f(0) − ∆2u0 − B(u0) − ϕ1ε,

where

F1(t, ε) = f̃ ′(t) −
∞∫

0

K(t, τ, ε) f̃ ′(τ) dτ +

∞∫

0

K(t, τ, ε) e−τ/ε dτ ∆2α−

−
(
B(v)

)′
(t) +

∫ ∞

0
K(t, τ, ε)

(
B(Ũε)

)′
(τ)dτ. (69)

Due to the conditions of Theorem 8, similarly as the inequality (56) was obtained,
and the estimates (57), (62), we get the inequality

||R1||C([0,t]; H) + ||∆R1||L2(0,t;L2(Ω)) ≤
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≤ C
[
|R10| + ||F1(·, ε)|L2(0,t;L2(Ω))

]
eγ1 t, ∀t ≥ 0. (70)

and the estimates

|R10| ≤
∞∫

0

e−τ |z̃(2 ετ) − z̃(0)| dτ ≤

≤
∞∫

0

e−τ

∫ 2ετ

0
|z̃′ε(s)| ds dτ ≤ C M0(T ) ε, ε ∈ (0, ε0], (71)

||F1(·, ε)|L2(0,t;L2(Ω)) ≤ C M0(T ) eC2 t ε(p−1)/(2 p), t ≥ 0, ε ∈ (0, ε0]. (72)

From (70), using (71) and (72), we get the estimate

||R1||C([0,t];L2(Ω)) + ||∆R1||L2(0,t;L2(Ω)) ≤ C M0(T ) eC2 t ε(p−1)/(2 p), (73)

t ≥ 0, ε ∈ (0, ε0].

Finally, due to (5), from (67), (68) and (73) the estimate (43) follows. Theorem 8
is proved.

Similarly, using Theorems 3 and 4 instead of Theorems 1 and 2 and Lemma 2
instead of Lemma 1, the following theorem is proved.

Theorem 9. Let T > 0 and p ∈ [2,∞]. Assume that (B3) is fulfilled. If

u0 ∈ H4(Ω) ∩ V , u1 ∈ V and f ∈ W 1,p(0, T ;L2(Ω)), then there exist constants

C = C(m, T, p,Ω, n) > 0 and ε0 = ε0(m, p,Ω, n), such that

||u − v||C([0,T ];L2(Ω)) ≤ C M(T ) εβ , t ∈ [0, T ], ε ∈ (0, ε0], (74)

||u − v||L∞(0,T ;V ) ≤ C M(T ) εβ , t ∈ [0, T ], ε ∈ (0, ε0], (75)

where u and v are solutions to the problems (Pε) and (P0), respectively,

M(T ) = |∆2u0| + ||u1|| + |B(u0)| + |B(u0)|1/2 + ||f ||W 1,p(0,T ;L2(Ω)),

m = |∆u0| + |u1| + |B(u0)|1/2 + ||f ||L2(0,T ;L2(Ω)), β =

{
1/2 if f = 0,

(p − 1)/(2 p) if f 6= 0.

If, in addition, condition (B4) is fulfilled and u0, u1, α ∈ H4(Ω) ∩ V and

f ∈ W 2, p(0, T ;L2(Ω)), then there exist constants ε0 = ε0(L,L0), ε0 ∈ (0, 1),
γ = γ(L,L0, L1), C = C(p, L,L0, L1) such that

||u′ − v′ + αe−t/ε||C([0, T ] ;L2(Ω)) + ||u′ − v′ + αe−t/ε||L2(0, T ;H2(Ω)) ≤

≤ C M2(T ) eγ t εβ , t ≥ 0, ε ∈ (0, ε0] (76)

with M2(T ) defined by (34).
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6 An Examples

In this section, we present some applications of Theorems 8 and 9, which are
determined by different operators B.

The Lipschitzian case. Let the operator B be one of the following: B(u) = |u|, or
B = |∇u|, or B(u) = sin u. In these cases it is easy to check that for the operator B
the conditions (B1) are fulfilled. Consequently, for every T > 0 and every p ∈ [2,∞],
if u0 ∈ H4(Ω) ∩ V, u1 ∈ V and f ∈ W 1,2(0, T ;L2(Ω)), then from Theorem 8 the
estimates (40) and (41) follow.

For B(u) = sin u, due to Theorem 6, condition (B2) is fulfilled if 1 ≤ n ≤ 12.
Indeed, for n = 1, 2, 3, 4, Theorem 6 ensures the fulfillment of the condition (B2).
For n > 4, using the Hölder’s inequality and Theorem 6, we have that

∫

Ω

∣∣(B′(u1) − B′(u2)
)
v
∣∣2 dx ≤

∫

Ω

∣∣( cos(u1) − cos(u2)
)
v
∣∣2 dx ≤

≤ 4

∫

Ω

∣∣ sin
(
(u1 − u2)/2

)
v
∣∣2 dx ≤ C

∫

Ω

∣∣u1 − u2

∣∣ |v|2 dx ≤

≤ C
(∫

Ω

∣∣u1 − u2

∣∣2 n/(n−4)
dx

)(n−4)/(2 n)
×

(∫

Ω

|v|4 n/(n+4) dx
)(n+4)/(2 n)

≤

≤ C ||u1 − u2||H2(Ω) ||v||2L4 n/(n+4)(Ω)
≤ C ||u1 − u2||H2(Ω) ||v||2H2(Ω), if 5 ≤ n ≤ 12.

Therefore, if u0, u1, α ∈ H4(Ω) ∩ V and f ∈ W 2, p(0, T ;L2(Ω)), then the estimate
(43) also holds. It means that

u → v in C([0, T ];L2(Ω)) ∩ L∞(0, T ;H2(Ω)), as ε → 0. (77)

At the same time, the relation (43) shows that in this case the derivative u′ of the
solution to the problem (Pε) does not converge to the derivative v′ of the solution
to the problem (P0). In this case the derivative u′ has a singular behavior in the
neighborhood of the point t = 0 as ε → 0. This singular behavior is described by
the function α e−t/ε, which is the boundary layer function for u′. If α = 0, then

u′ → v′ in C([0, T ];L2(Ω)), as ε → 0. (78)

The monotone case. Let B : D(B) = L2(Ω) ∩ L2(q+1)(Ω) 7→ L2(Ω),
B(u) = b |u|q u, b > 0.

Then the operator B is the Fréchet derivative of the convex and positive func-
tional B, defined as follows

D(B) = Lq+2(Ω) ∩ L2(Ω), Bu =
b

q + 2

∫

Ω
|u(x)|q+2 dx

and the Fréchet derivative of the operator B is defined by the relations

D
(
B′(u)

)
= {v ∈ L2(Ω) : uq v ∈ L2(Ω)}, B′(u)v = b (q + 1)|u|q v.



100 A. PERJAN, G. RUSU

In what follows, to check the fulfillment of the condition (B3) for the operator B
we apply Theorem 6.

If n > 4 and q ∈ [0, 4/(n−4)], then using the Hölder’s inequality and Theorem 6,
we get

||Bu1 − Bu2||2L2(Ω) = b2

∫

Ω

∣∣∣ |u1(x)|qu1(x) − |u2(x)|qu2(x)
∣∣∣
2
dx ≤

≤ C(q, b)

∫

Ω

∣∣u1(x) − u2(x)
∣∣2

(∣∣u1(x)
∣∣2q

+
∣∣u2(x)

∣∣2 q
)

dx ≤

≤ C(q, n, b)||u1 − u2||2L2 n/(n−4)(Ω)

(
||u1||2 q

Lq n/2(Ω)
+ ||u2||2 q

Lq n/2(Ω)

)
≤

≤ C(q, b, n,Ω)||u1 − u2||2H2(Ω)

(
||u1||2q

H2(Ω)
+ ||u2||2q

H2(Ω)

)
, u1, u2 ∈ V. (79)

Similarly, using the Hölder’s inequality and Theorem 6, it is not difficult to prove
the estimate (79) in the case q ∈ [0,∞] for n = 1, 2, 3, 4.

Thus, if 



b ≥ 0,
q ∈ [0, 4/(n − 4)], if n > 4,
q ∈ [0,∞], if n = 1, 2, 3, 4

(80)

then the operator B verifies condition (B3).
Finally, if u0 ∈ H4(Ω) ∩ V , u1 ∈ V and f ∈ W 1,p(0, T ;L2(Ω)) and conditions

(80) are met, then, by virtue of Theorem 9, the estimates (74) and (75) and hence
the relations (77) and are also valid.

If n > 4 and q ∈ [1, 4/(n − 4)], then, according to Theorem 6, we have

||
(
B′(u1) − B′(u2)

)
v||2L2(Ω) = b2(q + 1)2

∫

Ω

∣∣∣ |u1(x)|q − |u2(x)|q
∣∣∣
2
|v(x)|2 dx ≤

≤ C(q, b)

∫

Ω
|u1(x) − u2(x)|2

(
|u1(x)|2(q−1) + |u2(x)|2(q−1)

)
|v(x)|2 dx ≤

≤ C(q, b) ||v||2
L2n/(n−4)(Ω)

||u1 − u2||2L2n/(n−(n−4)q)(Ω)
×

×
(
||u1||2(q−1)

L2n/(n−4)(Ω)
+ ||u2||2(q−1)

L2n/(n−4)(Ω)

)
≤

≤ C(n, q, b,Ω, ω) ||u1 − u2||2H2(Ω) ||v||2H2(Ω)

(
||u1||2(q−1)

H2(Ω)
+ ||u2||2(q−1)

H2(Ω)

)
. (81)

Involving the Hölder’s inequality and Theorem 6, we get the inequality (81) in the
cases n = 1, 2, 3, 4 and q ≥ 1. Therefore, if





b ≥ 0,
q ∈ [1, 4/(n − 4)] if n > 4,
q ∈ [1,∞] if n = 1, 2, 3, 4,
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then the operator B verifies the condition (B4). Therefore, if u0, u1, α ∈ H4(Ω) ∩ V
and f ∈ W 2, p(0, T ;L2(Ω)), then the estimate (76) is fulfilled. Also, as in the Lips-
chitzian case, this relationship shows that the derivative u′ of solution to the problem
(Pε) does not converge to the derivative v′ of solution to the problem (P0). In this
case the derivative u′ has a singular behavior in the neighborhood of the point t = 0
as ε → 0. This singular behavior is described by the function α e−t/ε, which is the

boundary layer function for u′. If α = 0, then as in the Lipschitzian case the relation
(78) is true.
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