Convergence estimates for some abstract second order differential equations in Hilbert spaces

Andrei Perjan, Galina Rusu

Abstract

In a real Hilbert space H we consider the following perturbed Cauchy problem $$
\left\{\begin{array}{l} \varepsilon u_{\varepsilon \delta}^{\prime \prime}(t)+\delta u_{\varepsilon \delta}^{\prime}(t)+A u_{\varepsilon \delta}(t)+B\left(u_{\varepsilon \delta}(t)\right)=f(t), t \in(0, T), \\ u_{\varepsilon \delta}(0)=u_{0}, \quad u_{\varepsilon \delta}^{\prime}(0)=u_{1}, \end{array}\right.
$$

where $u_{0}, u_{1} \in H, f:[0, T] \mapsto H$ and ε, δ are two small parameters, A is a linear self-adjoint operator, B is a locally Lipschitz and monotone operator.

We study the behavior of solutions $u_{\varepsilon \delta}$ to the problem $\left(P_{\varepsilon \delta}\right)$ in two different cases:
(i) when $\varepsilon \rightarrow 0$ and $\delta \geq \delta_{0}>0$;
(ii) when $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$.

We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of $t=0$. We show the boundary layer and boundary layer function in both cases.

Keywords: Singular perturbation; abstract second order Cauchy problem; boundary layer function; a priori estimate.

Let H and V be two real Hilbert spaces endowed with norms $|\cdot|$ and $\|\cdot\|$, respectively. Denote by (\cdot, \cdot) the scalar product in H.

The framework of our studying is determined by the following conditions:
(H) $V \subset H$ densely and continuously, i.e.

$$
\|u\| \geq \omega_{0}|u|, \quad \forall u \in V, \quad \omega_{0}>0
$$

(c)2019 by Andrei Perjan, Galina Rusu
(HA) $A: D(A)=V \mapsto H$ is a linear, self-adjoint and positive definite operator, i.e.

$$
(A u, u) \geq \omega|u|^{2}, \quad \forall u \in V, \quad \omega>0 .
$$

(HB1) Operator $B: D(B) \subseteq H \rightarrow H$ is $A^{1 / 2}$ locally Lipschitz, i. e. $D\left(A^{1 / 2}\right) \subset D(B)$ and for every $R>0$ there exists $L(R) \geq 0$ such that

$$
\left|B\left(u_{1}\right)-B\left(u_{2}\right)\right| \leq L(R)\left|A^{1 / 2}\left(u_{1}-u_{2}\right)\right|, \forall u_{i} \in D\left(A^{1 / 2}\right),\left|A^{1 / 2} u_{i}\right| \leq R
$$

(HB2) Operator B is the Fréchet derivative of some convex and positive functional \mathcal{B} with $D\left(A^{1 / 2}\right) \subset D(\mathcal{B})$.
(HB3) Operator B possesses the Fréchet derivative B^{\prime} in $D\left(A^{1 / 2}\right)$ and there exists constant $L_{1}(R) \geq 0$ such that

$$
\begin{gathered}
\left|\left(B^{\prime}\left(u_{1}\right)-B^{\prime}\left(u_{2}\right)\right) v\right| \leq L_{1}(R)\left|A^{1 / 2}\left(u_{1}-u_{2}\right)\right|\left|A^{1 / 2} v\right|, \quad \forall u_{i}, v \in D\left(A^{1 / 2}\right) \\
\left|A^{1 / 2} u_{i}\right| \leq R, \quad i=1,2
\end{gathered}
$$

The hypothesis (HB2) implies, in particular, that operator B is monotone and verifies condition

$$
\frac{d}{d t} \mathcal{B}(u(t))=\left(B(u(t)), u^{\prime}(t)\right), \quad \forall t \in[a, b] \subset \mathbb{R}
$$

in the case when $u \in C\left([a, b], D\left(A^{1 / 2}\right)\right) \cap C^{1}([a, b], H)$.
Consider the following perturbed Cauchy problem

$$
\left\{\begin{array}{l}
\varepsilon u_{\varepsilon \delta}^{\prime \prime}(t)+\delta u_{\varepsilon \delta}^{\prime}(t)+A u_{\varepsilon \delta}(t)+B\left(u_{\varepsilon \delta}(t)\right)=f(t), t \in(0, T), \\
u_{\varepsilon \delta}(0)=u_{0}, \quad u_{\varepsilon \delta}^{\prime}(0)=u_{1}
\end{array}\right.
$$

where $u_{0}, u_{1} \in H, f:[0, T] \mapsto H$ and ε, δ are two small parameters.
We study the behavior of solutions $u_{\varepsilon \delta}$ to the problem $\left(P_{\varepsilon \delta}\right)$ in two different cases:
(i) $\varepsilon \rightarrow 0$ and $\delta \geq \delta_{0}>0$, relative to the following unperturbed system:

$$
\left\{\begin{array}{l}
\delta l_{\delta}^{\prime}(t)+A l_{\delta}(t)+B\left(l_{\delta}(t)\right)=f(t), \quad t \in(0, T) \\
l_{\delta}(0)=u_{0}
\end{array}\right.
$$

(ii) $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$, relative to the following unperturbed problem:

$$
\begin{equation*}
A v(t)+B(v(t))=f(t), \quad t \in[0, T) \tag{0}
\end{equation*}
$$

The problem $\left(P_{\varepsilon \delta}\right)$ is the abstract model of singularly perturbed problems of hyperbolic-parabolic type in the case (i) and of hyperbolic-parabolic-elliptic type in the case (ii). Such kind of problems arises in the mathematical modeling of elasto-plasticity phenomena. These abstract results can be applied to singularly perturbed problems of hyperbolic-parabolic-elliptic type with stationary part defined by strongly elliptic operators.

For the case $\delta \geq \delta_{0}>0$, in conditions (H), (HA), (HB1), (HB2) and (HB3), using results obtained in [1], we obtain some a priori estimates of solutions to the perturbed problem, which are uniform with respect to parameters, and get the relationship between the solutions to the problems $\left(P_{\varepsilon \delta}\right)$ and (P_{δ}) emphasised in the following inequalities

$$
\begin{gathered}
\left\|u_{\varepsilon \delta}-l_{\delta}\right\|_{C([0, T] ; H)}+\left\|A^{1 / 2} u_{\varepsilon \delta}-A^{1 / 2} l_{\delta}\right\|_{L^{2}(0, T ; H)} \leq C \varepsilon^{\beta}, \\
\left\|u_{\varepsilon \delta}^{\prime}-l_{\delta}^{\prime}+H_{\varepsilon \delta} e^{-\delta^{2} t / \varepsilon}\right\|_{C([0, T] ; H)}+\left\|A^{1 / 2}\left(u_{\varepsilon \delta}^{\prime}-l_{\delta}^{\prime}+H_{\varepsilon \delta} e^{-\delta^{2} t / \varepsilon}\right)\right\|_{L^{2}(0, T ; H)} \leq \\
\leq C \varepsilon^{\beta}, \forall \varepsilon \in\left(0, \varepsilon_{0}\right], T>0, p>1,
\end{gathered}
$$

where $u_{\varepsilon \delta}$ and l_{δ} are strong solutions to problems $\left(P_{\varepsilon \delta}\right)$ and $\left(P_{\delta}\right)$ respectively, $\varepsilon_{0}=\varepsilon_{0}\left(\omega_{0}, \omega, T, \delta_{0}, u_{0}, u_{1}, f\right) \in(0,1), \beta=\min \{1 / 4,(p-1) / 2 p\}$, $C=C\left(T, p, \delta_{0}, \omega_{0}, \omega, u_{0}, u_{1}, H_{\varepsilon \delta}, f\right)>0$,

$$
H_{\varepsilon \delta}=\delta^{-1} f(0)-u_{1}-\delta^{-1} A u_{0}-\delta^{-1} B\left(u_{0}\right)
$$

For the case $\varepsilon \rightarrow 0, \delta \rightarrow 0$, in conditions (H), (HA), (HB1) and (HB2), in [2] we established the relationship between the solutions to the problems $\left(P_{\varepsilon \delta}\right)$ and $\left(P_{\delta}\right)$ emphasised in the following inequality

$$
\left\|u_{\varepsilon \delta}-v-h_{\delta}\right\|_{C([0, T] ; H)} \leq C \Theta(\varepsilon, \delta), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \forall \delta \in(0,1]
$$

where $u_{\varepsilon \delta}$ and v are strong solutions to problems $\left(P_{\varepsilon \delta}\right)$ and $\left(P_{0}\right)$ respectively, $\varepsilon_{0}=\varepsilon_{0}\left(\omega_{0}, \omega, T, \delta_{0}, u_{0}, u_{1}, f\right) \in(0,1), \beta=\min \{1 / 4,(p-1) / 2 p\}$,
$C=C\left(T, p, \omega_{0}, \omega, u_{0}, u_{1}, f\right)>0$, the function h_{δ} is the solution to the problem

$$
\begin{gathered}
\left\{\begin{array}{l}
\delta h_{\delta}^{\prime}(t)+A h_{\delta}(t)+B\left(l_{\delta}(t)\right)-B(v(t))=0, \quad t \in(0, T) \\
h_{\delta}(0)=u_{0}-(A+B)^{-1} f(0)
\end{array}\right. \\
\Theta(\varepsilon, \delta)=\frac{\varepsilon^{1 / 4}}{\delta^{7 / 4+1 / p}}+\sqrt{\delta} .
\end{gathered}
$$

From the last three inequalities we can state that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of $t=0$ in both cases.

Acknowledgments. Researches supported by the Program 15.817.02.26F.

References

[1] A. Perjan, G. Rusu. Convergence estimates for abstract second order singularly perturbed Cauchy problems with monotone nonlinearities. Ann. Acad. Rom. Sci. Ser. Math. Appl., vol. 4, no. 2, 2012, pp. 128-182.
[2] A. Perjan. G. Rusu. Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities. Topological Methods in Nonlinear Analysis, 17 p. (ACCEPTED)

Galina Rusu ${ }^{1}$, Andrei Perjan ${ }^{2}$
${ }^{1}$ Moldova State University
E-mail: aperjan1248@gmail.com
${ }^{2}$ Moldova State University
E-mail: rusugalinamoldova@gmail.com

