Convergence estimates for some abstract second order differential equations in Hilbert spaces

Andrei Perjan, Galina Rusu

Abstract

In a real Hilbert space ${\cal H}$ we consider the following perturbed Cauchy problem

$$\begin{cases} \varepsilon \, u_{\varepsilon\delta}''(t) + \delta \, u_{\varepsilon\delta}'(t) + A u_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f(t), t \in (0, T), \\ u_{\varepsilon\delta}(0) = u_0, \quad u_{\varepsilon\delta}'(0) = u_1, \end{cases}$$

$$(P_{\varepsilon\delta}(t) + \delta \, u_{\varepsilon\delta}'(t) + A u_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f(t), t \in (0, T),$$

$$(P_{\varepsilon\delta}(t) + \delta \, u_{\varepsilon\delta}'(t) + A u_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f(t), t \in (0, T),$$

$$(P_{\varepsilon\delta}(t) + \delta \, u_{\varepsilon\delta}'(t) + A u_{\varepsilon\delta}(t) + A u_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f(t), t \in (0, T),$$

where $u_0, u_1 \in H$, $f: [0,T] \mapsto H$ and ε , δ are two small parameters, A is a linear self-adjoint operator, B is a locally Lipschitz and monotone operator.

We study the behavior of solutions $u_{\varepsilon\delta}$ to the problem $(P_{\varepsilon\delta})$ in two different cases:

- (i) when $\varepsilon \to 0$ and $\delta \ge \delta_0 > 0$;
- (ii) when $\varepsilon \to 0$ and $\delta \to 0$.

We establish that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of t = 0. We show the boundary layer and boundary layer function in both cases.

Keywords: Singular perturbation; abstract second order Cauchy problem; boundary layer function; a priori estimate.

Let H and V be two real Hilbert spaces endowed with norms $|\cdot|$ and $||\cdot||$, respectively. Denote by (\cdot,\cdot) the scalar product in H.

The framework of our studying is determined by the following conditions:

(H) $V \subset H$ densely and continuously, i.e.

$$||u|| \ge \omega_0 |u|, \quad \forall u \in V, \quad \omega_0 > 0.$$

^{©2019} by Andrei Perjan, Galina Rusu

(HA) $A: D(A) = V \mapsto H$ is a linear, self-adjoint and positive definite operator, i.e.

$$(Au, u) \ge \omega |u|^2, \quad \forall u \in V, \quad \omega > 0.$$

(HB1) Operator $B: D(B) \subseteq H \to H$ is $A^{1/2}$ locally Lipschitz, i. e. $D(A^{1/2}) \subset D(B)$ and for every R > 0 there exists $L(R) \ge 0$ such that

$$|B(u_1) - B(u_2)| \le L(R)|A^{1/2}(u_1 - u_2)|, \ \forall u_i \in D(A^{1/2}), |A^{1/2}u_i| \le R;$$

(HB2) Operator B is the Fréchet derivative of some convex and positive functional \mathcal{B} with $D(A^{1/2}) \subset D(\mathcal{B})$.

(HB3) Operator B possesses the Fréchet derivative B' in $D(A^{1/2})$ and there exists constant $L_1(R) \geq 0$ such that

$$\left| \left(B'(u_1) - B'(u_2) \right) v \right| \le L_1(R) \left| A^{1/2}(u_1 - u_2) \right| \left| A^{1/2} v \right|, \quad \forall u_i, \ v \in D(A^{1/2}),$$

$$\left| A^{1/2} u_i \right| < R, \quad i = 1, 2.$$

The hypothesis **(HB2)** implies, in particular, that operator B is monotone and verifies condition

$$\frac{d}{dt}\mathcal{B}(u(t)) = (B(u(t)), u'(t)), \quad \forall t \in [a, b] \subset \mathbb{R},$$

in the case when $u \in C([a, b], D(A^{1/2})) \cap C^1([a, b], H)$.

Consider the following perturbed Cauchy problem

$$\begin{cases} \varepsilon \, u_{\varepsilon\delta}''(t) + \delta \, u_{\varepsilon\delta}'(t) + A u_{\varepsilon\delta}(t) + B(u_{\varepsilon\delta}(t)) = f(t), t \in (0, T), \\ u_{\varepsilon\delta}(0) = u_0, \quad u_{\varepsilon\delta}'(0) = u_1, \end{cases}$$
 ($P_{\varepsilon\delta}$)

where $u_0, u_1 \in H$, $f: [0,T] \mapsto H$ and ε , δ are two small parameters.

We study the behavior of solutions $u_{\varepsilon\delta}$ to the problem $(P_{\varepsilon\delta})$ in two different cases:

(i) $\varepsilon \to 0$ and $\delta \ge \delta_0 > 0$, relative to the following unperturbed system:

$$\begin{cases} \delta l_{\delta}'(t) + A l_{\delta}(t) + B(l_{\delta}(t)) = f(t), & t \in (0, T), \\ l_{\delta}(0) = u_0, \end{cases}$$
 (P_{\delta})

(ii) $\varepsilon \to 0$ and $\delta \to 0$, relative to the following unperturbed problem:

$$Av(t) + B(v(t)) = f(t), \quad t \in [0, T).$$
 (P₀)

The problem $(P_{\varepsilon\delta})$ is the abstract model of singularly perturbed problems of hyperbolic-parabolic type in the case (i) and of hyperbolic-parabolic-elliptic type in the case (ii). Such kind of problems arises in the mathematical modeling of elasto-plasticity phenomena. These abstract results can be applied to singularly perturbed problems of hyperbolic-parabolic-elliptic type with stationary part defined by strongly elliptic operators.

For the case $\delta \geq \delta_0 > 0$, in conditions (H), (HA), (HB1), (HB2) and (HB3), using results obtained in [1], we obtain some *a priori* estimates of solutions to the perturbed problem, which are uniform with respect to parameters, and get the relationship between the solutions to the problems $(P_{\varepsilon\delta})$ and (P_{δ}) emphasised in the following inequalities

$$||u_{\varepsilon\delta} - l_{\delta}||_{C([0,T];H)} + ||A^{1/2}u_{\varepsilon\delta} - A^{1/2}l_{\delta}||_{L^{2}(0,T;H)} \leq C \varepsilon^{\beta},$$

$$||u'_{\varepsilon\delta} - l'_{\delta} + H_{\varepsilon\delta}e^{-\delta^{2}t/\varepsilon}||_{C([0,T];H)} + ||A^{1/2}(u'_{\varepsilon\delta} - l'_{\delta} + H_{\varepsilon\delta}e^{-\delta^{2}t/\varepsilon})||_{L^{2}(0,T;H)} \leq$$

$$< C \varepsilon^{\beta}, \forall \varepsilon \in (0, \varepsilon_{0}], T > 0, p > 1,$$

where $u_{\varepsilon\delta}$ and l_{δ} are strong solutions to problems $(P_{\varepsilon\delta})$ and (P_{δ}) respectively, $\varepsilon_0 = \varepsilon_0(\omega_0, \omega, T, \delta_0, u_0, u_1, f) \in (0, 1), \ \beta = \min\{1/4, \ (p-1)/2p\}, C = C(T, p, \delta_0, \omega_0, \omega, u_0, u_1, H_{\varepsilon\delta}, f) > 0,$

$$H_{\varepsilon\delta} = \delta^{-1} f(0) - u_1 - \delta^{-1} A u_0 - \delta^{-1} B(u_0).$$

For the case $\varepsilon \to 0$, $\delta \to 0$, in conditions (H), (HA), (HB1) and (HB2), in [2] we established the relationship between the solutions to the problems $(P_{\varepsilon\delta})$ and (P_{δ}) emphasised in the following inequality

$$||u_{\varepsilon\delta} - v - h_{\delta}||_{C([0,T];H)} \le C \Theta(\varepsilon, \delta), \ \forall \varepsilon \in (0, \varepsilon_0], \ \forall \delta \in (0, 1],$$

where $u_{\varepsilon\delta}$ and v are strong solutions to problems $(P_{\varepsilon\delta})$ and (P_0) respectively, $\varepsilon_0 = \varepsilon_0(\omega_0, \omega, T, \delta_0, u_0, u_1, f) \in (0, 1), \beta = \min\{1/4, (p-1)/2p\},$

 $C = C(T, p, \omega_0, \omega, u_0, u_1, f) > 0$, the function h_{δ} is the solution to the problem

$$\begin{cases} \delta h'_{\delta}(t) + Ah_{\delta}(t) + B(l_{\delta}(t)) - B(v(t)) = 0, & t \in (0, T), \\ h_{\delta}(0) = u_0 - (A+B)^{-1} f(0), \end{cases}$$

$$\Theta(\varepsilon, \delta) = \frac{\varepsilon^{1/4}}{\delta^{7/4 + 1/p}} + \sqrt{\delta}.$$

From the last three inequalities we can state that the solution to the unperturbed problem has a singular behavior, relative to the parameters, in the neighborhood of t=0 in both cases.

Acknowledgments. Researches supported by the Program 15.817.02.26F.

References

- [1] A. Perjan, G. Rusu. Convergence estimates for abstract second order singularly perturbed Cauchy problems with monotone non-linearities. Ann. Acad. Rom. Sci. Ser. Math. Appl., vol. 4, no. 2, 2012, pp. 128–182.
- [2] A. Perjan. G. Rusu. Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities. Topological Methods in Nonlinear Analysis, 17 p. (ACCEPTED)

Galina Rusu¹, Andrei Perjan²

¹ Moldova State University E-mail: aperjan1248@gmail.com

² Moldova State University

E-mail: rusugalinamoldova@gmail.com