On the holomorph of π -quasigroups of type T_1

Dina Ceban, Parascovia Syrbu

Abstract

Quasigroups satisfying the identity $x \cdot (x \cdot (x \cdot y)) = y$ are called π -quasigroups of type T_1 . Necessary and sufficient conditions for the holomorph of a π -quasigroup of type T_1 to be a π -quasigroup of type T_1 are established. Also, it is proved that the left (right) multiplication group of a π -quasigroup of type T_1 is isomorphic to some normal subgroup of the left (right) multiplication group of the left (right) multiplication group of its holomorph, respectively.

Keywords: π -quasigroup of type T_1 , holomorph, multiplication group, normal subgroup.

Quasigroups satisfying identities of length five, with two variables, are called π -quasigroups. V. Belousov [1] and, independently F. Bennett [2], have given a classification of minimal identities, consisting of seven identities. The general form of an identity of length five with two variables in a quasigroup (Q, A) is:

$$^{\alpha}A(x,^{\beta}A(x,^{\gamma}A(x,y))) = y, \qquad (1)$$

where $\alpha, \beta, \gamma \in S_3$. In this case, the tuple $[\alpha, \beta, \gamma]$ is called the type of the identity (1), and the quasigroup (Q, A) which satisfies (1), is called a π -quasigroup of type $T = [\alpha, \beta, \gamma]$. Using the notations from [1], a quasigroup (Q, \cdot) which satisfies the identity

$$x \cdot (x \cdot (x \cdot y)) = y \tag{2}$$

is called a π -quasigroup of type $T_1 = [\varepsilon, \varepsilon, \varepsilon]$, where ε is the identity of S_Q . If (Q, \cdot) is a quasigroup, then the groupoid $(Hol(Q, \cdot), \circ)$, where $Hol(Q, \cdot) = Aut(Q, \cdot) \times Q$ and

$$(\alpha, x) \circ (\beta, y) = (\alpha \beta, \beta(x) \cdot y),$$

^{©2014} by D. Ceban, P. Syrbu

for $\forall (\alpha, x), (\beta, y) \in Hol(Q, \cdot)$, is called the holomorph of the quasigroup (Q, \cdot) [3]. From the definition it follows that the holomorph of a quasigroup is a quasigroup. Moreover, the mapping $Q \mapsto Hol(Q, \cdot), x \mapsto (\varepsilon, x)$, is an embedding of the quasigroup (Q, \cdot) into its holomorph $(Hol(Q, \cdot), \circ)$. Thus, denoting $Q_1 = \{(\varepsilon, x) | x \in Q\}$, we obtain $(Q, \cdot) \cong (Q_1, \circ)$. If the quasigroup (Q, \cdot) has a right or a left unit, then the mapping $Aut(Q, \cdot) \mapsto Hol(Q, \cdot), \alpha \mapsto (\alpha, e)$ is an embedding, too. In particular, if (Q, \cdot) is a group with an abelian group of automorphisms, then $(Hol(Q, \cdot), \circ)$ is a group, $(Q_1, \circ) \triangleleft Hol(Q, \cdot)$, where $Q_1 = \{(\varepsilon, x) | x \in Q\}$, and $Hol(Q, \cdot)/(Q_1, \circ) \cong Aut(Q, \cdot)$. This isomorphism is given by the surjection:

$$\xi: Hol(Q, \cdot) \to Aut(Q, \cdot), \xi(\varphi, x) = \varphi,$$

for which $Ker\xi = (Q_1, \circ)$.

Proposition 1. The holomorph of a π -quasigroup of type T_1 is a π -quasigroup of type T_1 , if and only if the following conditions hold: $1)\alpha^3 = \varepsilon, \forall \alpha \in Aut(Q, \cdot);$ $2)x \cdot (\alpha^2(x) \cdot (\alpha(x) \cdot y)) = y, \forall \alpha \in Aut(Q, \cdot), \forall x, y \in Q.$

Proof. If (Q, \cdot) is a π -quasigroup of type T_1 and $(\alpha, x), (\beta, y) \in$ $Hol(Q, \cdot)$, then: $(\alpha, x) \circ ((\alpha, x) \circ ((\alpha, x) \circ (\beta, y))) = (\alpha, x) \circ ((\alpha, x) \circ (\alpha\beta, \beta(x) \cdot y)) = (\alpha, x) \circ (\alpha^2\beta, \alpha\beta(x) \cdot (\beta(x) \cdot y)) = (\alpha^3\beta, \alpha^2\beta(x) \cdot (\alpha\beta(x) \cdot (\beta(x) \cdot y))) = (\beta, y)$, hence:

$$\left\{ \begin{array}{c} \alpha^3 = \varepsilon \\ \alpha^2 \beta(x) \cdot (\alpha \beta(x) \cdot (\beta(x) \cdot y)) = y. \end{array} \right.$$

Making the replacement $x \mapsto \beta^{-1}\alpha(x)$, and using the equality $\alpha^3 = \varepsilon$, the second relation implies:

$$x \cdot (\alpha^2(x) \cdot (\alpha(x) \cdot y)) = y,$$

for $\forall x, y \in Q, \forall \alpha \in Aut(Q, \cdot)$.

Remark 1. The holomorph of a π -quasigroup of type T_1 with a trivial group of automorphisms is a π -quasigroup of type T_1 . This fact is used below to obtain π -quasigroups of type T_1 , the holomorphs of which are from the same class.

Example. The quasigroup (Q, \cdot) , where $Q = \{1, 2, 3\}$, given by the left translations $L_1 = (132)$, $L_2 = (123)$, $L_3 = \varepsilon$, is a π -quasigroup of type T_1 with $Aut(Q, \cdot) = \{\varepsilon\}$, so its holomorph $Hol(Q, \cdot)$ is a π -quasigroup of type T_1 as well.

Remark 2. 1. If $L_{(\beta,b)}^{(\circ)}$ and $R_{(\beta,b)}^{(\circ)}$ are the left and, respectively, the right translations with (β, b) in the holomorph $(Hol(Q, \cdot), \circ)$, then, for every $(\alpha, a) \in (Hol(Q, \cdot), \circ)$, we have:

$$L_{(\beta,b)}^{(\circ)-1}(\alpha,a) = (\beta^{-1}\alpha,\beta^{-1}\alpha(b)\backslash a) = L_{(\beta^{-1},b_1)}^{(\circ)}(\alpha,a),$$

where $\alpha(b_1) \cdot a = \beta^{-1} \alpha(b) \setminus a$ and, respectively,

$$R_{(\beta,b)}^{(\circ)-1}(\alpha,a) = (\alpha\beta^{-1}, \beta^{-1}(a/b)) = R_{(\beta^{-1},b_2)}^{(\circ)}(\alpha,a),$$

where $\alpha(b_2) = \beta^{-1}(a/b)$.

2. Let (Q, \cdot) be a finite π -quasigroup of type T_1 . If $(Hol(Q, \cdot), \circ)$ is a π -quasigroup of type T_1 , then there exists a positive integer k such that $|Aut(Q, \cdot)| = 3^k$ and $|Hol(Q, \cdot)| \equiv 0 \pmod{3}$.

Proposition 2. Let (Q, \cdot) be a π -quasigroup of type T_1 and let $Q_1 = \{(\varepsilon, x) | x \in Q\}$. Then $(Q, \cdot) \cong (Q_1, \circ)$ and the following statements hold: $1 LM(Q_1, \circ) \triangleleft LM(Hol(Q, \cdot), \circ); 2)RM(Q_1, \circ) \triangleleft RM(Hol(Q, \cdot), \circ)$.

Proof. 1) $(Q, \cdot) \cong (Q_1, \circ)$ implies $LM(Q, \cdot) \cong LM(Q_1, \circ)$. Moreover, $LM(Q_1, \circ)$ is a subgroup of $LM(Hol(Q, \cdot), \circ)$. Now, let $L_{(\varepsilon,x)}^{(\circ)} \in LM(Q_1, \circ)$ and $L_{(\beta,b)}^{(\circ)} \in LM(Hol(Q, \cdot), \circ)$, then:

$$L_{(\beta,b)}^{(\circ)}L_{(\varepsilon,x)}^{(\circ)}L_{(\beta,b)}^{(\circ)-1}(\alpha,a) = L_{(\beta,b)}^{(\circ)}L_{(\varepsilon,x)}^{(\circ)}(\beta^{-1}\alpha,\beta^{-1}\alpha(b)\cdot a) = L_{(\beta,b)}^{(\circ)}(\beta^{-1}\alpha,\beta^{-1}\alpha(x)\cdot(\beta^{-1}\alpha(b)\backslash a)) =$$

$$(\alpha, \beta^{-1}\alpha(b) \cdot (\beta^{-1}\alpha(x) \cdot (\beta^{-1}\alpha(b)\backslash a))) = L^{(\circ)}_{(\varepsilon,c)}(\alpha, a),$$

for $\forall (\alpha, a) \in Hol(Q, \cdot)$, where $\alpha(c) \cdot a = \beta^{-1}\alpha(b) \cdot (\beta^{-1}\alpha(x) \cdot (\beta^{-1}\alpha(b)\backslash a))$. Thus,

$$L_{(\beta,b)}^{(\circ)}L_{(\varepsilon,x)}^{(\circ)}L_{(\beta,b)}^{(\circ)-1} \in LM(Q_1,\circ).$$
(3)

Analogously,

$$L_{(\beta,b)}^{(\circ)-1}L_{(\varepsilon,x)}^{(\circ)}L_{(\beta,b)}^{(\circ)}(\alpha,a) = L_{(\beta,b)}^{(\circ)-1}L_{(\varepsilon,x)}^{(\circ)}(\beta\alpha,\alpha(b)\cdot a) = L_{(\beta,b)}^{(\circ)-1}(\beta\alpha,\beta\alpha(x)\cdot(\alpha(b)\cdot a)) = (\alpha,\alpha(b)\backslash(\beta\alpha(x)\cdot(\alpha(b)\cdot a))) = L_{(\varepsilon,g)}^{(\circ)}(\alpha,a),$$

for $\forall (\alpha, a) \in Hol(Q, \cdot)$, where $\alpha(g) \cdot a = \alpha(b) \setminus (\beta \alpha(x) \cdot (\alpha(b) \cdot a))$. So,

$$L_{(\beta,b)}^{(\circ)-1}L_{(\varepsilon,x)}^{(\circ)}L_{(\beta,b)}^{(\circ)} \in LM(Q_1,\circ).$$

$$\tag{4}$$

(3) and (4) imply that $LM(Q_1, \circ) \triangleleft LM(Hol(Q, \cdot), \circ)$. The proof of the second relation is similar. \Box

Remark 3. The function $\xi : LM(Hol(Q, \cdot)) \mapsto Aut(Q, \cdot),$ $\xi(L_{(\alpha_1, x_1)}^{\delta_1} L_{(\alpha_2, x_2)}^{\delta_2}, ..., L_{(\alpha_n, x_n)}^{\delta_n}) = \alpha_1^{\delta_1} \alpha_2^{\delta_2} ... \alpha_n^{\delta_n},$ where $\delta_i = 1$ or -1, for every i = 1, 2, ..., n, is a surjective homomorphism with $Ker\xi = LM(Q_1, \circ),$ so $LM(Hol(Q, \cdot))/LM(Q_1, \circ) \cong Aut(Q, \cdot).$

References

- V. Belousov. Parastrofic-orthogonal quasigroups. Quasigroups and Related Systems, 2005, 14, pp. 3–51.
- [2] F.E. Bennett. Quasigroups, in "Handbook of Combinatorial Designs". Eds. C.J. Colbourn and J.H. Dinitz, CRC Press, 1996.
- [3] H.O. Pflugfelder. Quasigroups and loops: introduction. Sigma Series in Pure Math, 1990.
- [4] P. Syrbu. On π-quasigroups isotopic to abelian groups. Bul. Acad. Stiinte Repub. Mold. Mat., 2009, 3(61), pp. 109–117.

David Ceban¹, Parascovia Syrbu²

¹ State University of Moldova	$\operatorname{Email:}$ davidcheban@yahoo.com
² State University of Moldova	Email: syrbuviv@yahoo.com