On the holomorph of π-quasigroups of type T_{1}

Dina Ceban, Parascovia Syrbu

Abstract

Quasigroups satisfying the identity $x \cdot(x \cdot(x \cdot y))=y$ are called π-quasigroups of type T_{1}. Necessary and sufficient conditions for the holomorph of a π-quasigroup of type T_{1} to be a π-quasigroup of type T_{1} are established. Also, it is proved that the left (right) multiplication group of a π-quasigroup of type T_{1} is isomorphic to some normal subgroup of the left (right) multiplication group of its holomorph, respectively.

Keywords: π-quasigroup of type T_{1}, holomorph, multiplication group, normal subgroup.

Quasigroups satisfying identities of length five, with two variables, are called π-quasigroups. V. Belousov [1] and, independently F. Bennett [2], have given a classification of minimal identities, consisting of seven identities. The general form of an identity of length five with two variables in a quasigroup (Q, A) is:

$$
\begin{equation*}
{ }^{\alpha} A\left(x,{ }^{\beta} A\left(x,{ }^{\gamma} A(x, y)\right)\right)=y \tag{1}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in S_{3}$. In this case, the tuple $[\alpha, \beta, \gamma]$ is called the type of the identity (1), and the quasigroup (Q, A) which satisfies (1), is called a π-quasigroup of type $T=[\alpha, \beta, \gamma]$. Using the notations from [1], a quasigroup (Q, \cdot) which satisfies the identity

$$
\begin{equation*}
x \cdot(x \cdot(x \cdot y))=y \tag{2}
\end{equation*}
$$

is called a π-quasigroup of type $T_{1}=[\varepsilon, \varepsilon, \varepsilon]$, where ε is the identity of S_{Q}. If (Q, \cdot) is a quasigroup, then the groupoid $(\operatorname{Hol}(Q, \cdot), \circ)$, where $\operatorname{Hol}(Q, \cdot)=\operatorname{Aut}(Q, \cdot) \times Q$ and

$$
(\alpha, x) \circ(\beta, y)=(\alpha \beta, \beta(x) \cdot y)
$$

[^0]for $\forall(\alpha, x),(\beta, y) \in \operatorname{Hol}(Q, \cdot)$, is called the holomorph of the quasigroup $(Q, \cdot)[3]$. From the definition it follows that the holomorph of a quasigroup is a quasigroup. Moreover, the mapping $Q \mapsto \operatorname{Hol}(Q, \cdot), x \mapsto$ (ε, x), is an embedding of the quasigroup (Q, \cdot) into its holomorph $(\operatorname{Hol}(Q, \cdot), \circ)$. Thus, denoting $Q_{1}=\{(\varepsilon, x) \mid x \in Q\}$, we obtain $(Q, \cdot) \cong\left(Q_{1}, \circ\right)$. If the quasigroup (Q, \cdot) has a right or a left unit, then the mapping $\operatorname{Aut}(Q, \cdot) \mapsto \operatorname{Hol}(Q, \cdot), \alpha \mapsto(\alpha, e)$ is an embedding, too. In particular, if (Q, \cdot) is a group with an abelian group of automorphisms, then $(\operatorname{Hol}(Q, \cdot), \circ)$ is a group, $\left(Q_{1}, \circ\right) \triangleleft \operatorname{Hol}(Q, \cdot)$, where $Q_{1}=\{(\varepsilon, x) \mid x \in Q\}$, and $\operatorname{Hol}(Q, \cdot) /\left(Q_{1}, \circ\right) \cong \operatorname{Aut}(Q, \cdot)$. This isomorphism is given by the surjection:
$$
\xi: \operatorname{Hol}(Q, \cdot) \rightarrow \operatorname{Aut}(Q, \cdot), \xi(\varphi, x)=\varphi,
$$
for which $\operatorname{Ker} \xi=\left(Q_{1}, \circ\right)$.
Proposition 1. The holomorph of a π-quasigroup of type T_{1} is a π-quasigroup of type T_{1}, if and only if the following conditions hold:

1) $\alpha^{3}=\varepsilon, \forall \alpha \in \operatorname{Aut}(Q, \cdot) ;$
2) $x \cdot\left(\alpha^{2}(x) \cdot(\alpha(x) \cdot y)\right)=y, \forall \alpha \in \operatorname{Aut}(Q, \cdot), \forall x, y \in Q$.

Proof. If (Q, \cdot) is a π-quasigroup of type T_{1} and $(\alpha, x),(\beta, y) \in$ $\operatorname{Hol}(Q, \cdot)$, then: $(\alpha, x) \circ((\alpha, x) \circ((\alpha, x) \circ(\beta, y)))=(\alpha, x) \circ((\alpha, x) \circ$ $(\alpha \beta, \beta(x) \cdot y))=(\alpha, x) \circ\left(\alpha^{2} \beta, \alpha \beta(x) \cdot(\beta(x) \cdot y)\right)=\left(\alpha^{3} \beta, \alpha^{2} \beta(x) \cdot(\alpha \beta(x)\right.$. $(\beta(x) \cdot y)))=(\beta, y)$, hence:

$$
\left\{\begin{array}{c}
\alpha^{3}=\varepsilon \\
\alpha^{2} \beta(x) \cdot(\alpha \beta(x) \cdot(\beta(x) \cdot y))=y
\end{array}\right.
$$

Making the replacement $x \mapsto \beta^{-1} \alpha(x)$, and using the equality $\alpha^{3}=\varepsilon$, the second relation implies:

$$
x \cdot\left(\alpha^{2}(x) \cdot(\alpha(x) \cdot y)\right)=y
$$

for $\forall x, y \in Q, \forall \alpha \in \operatorname{Aut}(Q, \cdot)$.

Remark 1. The holomorph of a π-quasigroup of type T_{1} with a trivial group of automorphisms is a π-quasigroup of type T_{1}. This fact is used below to obtain π-quasigroups of type T_{1}, the holomorphs of which are from the same class.

Example. The quasigroup (Q, \cdot), where $Q=\{1,2,3\}$, given by the left translations $L_{1}=(132), L_{2}=(123), L_{3}=\varepsilon$, is a π-quasigroup of type T_{1} with $\operatorname{Aut}(Q, \cdot)=\{\varepsilon\}$, so its holomorph $\operatorname{Hol}(Q, \cdot)$ is a π-quasigroup of type T_{1} as well.

Remark 2. 1. If $L_{(\beta, b)}^{(\circ)}$ and $R_{(\beta, b)}^{(\circ)}$ are the left and, respectively, the right translations with (β, b) in the holomorph $(\operatorname{Hol}(Q, \cdot), \circ)$, then, for every $(\alpha, a) \in(\operatorname{Hol}(Q, \cdot)$, we have:

$$
L_{(\beta, b)}^{(\circ)-1}(\alpha, a)=\left(\beta^{-1} \alpha, \beta^{-1} \alpha(b) \backslash a\right)=L_{\left(\beta^{-1}, b_{1}\right)}^{(\circ)}(\alpha, a),
$$

where $\left.\alpha\left(b_{1}\right) \cdot a=\beta^{-1} \alpha(b) \backslash a\right)$ and, respectively,

$$
R_{(\beta, b)}^{(\circ)-1}(\alpha, a)=\left(\alpha \beta^{-1}, \beta^{-1}(a / b)\right)=R_{\left(\beta^{-1}, b_{2}\right)}^{(\circ)}(\alpha, a),
$$

where $\alpha\left(b_{2}\right)=\beta^{-1}(a / b)$.
2. Let (Q, \cdot) be a finite π-quasigroup of type T_{1}. If $(\operatorname{Hol}(Q, \cdot), \circ)$ is a π-quasigroup of type T_{1}, then there exists a positive integer k such that $|\operatorname{Aut}(Q, \cdot)|=3^{k}$ and $|\operatorname{Hol}(Q, \cdot)| \equiv 0(\bmod 3)$.
Proposition 2. Let (Q, \cdot) be a π-quasigroup of type T_{1} and let $Q_{1}=\{(\varepsilon, x) \mid x \in Q\}$. Then $(Q, \cdot) \cong\left(Q_{1}, \circ\right)$ and the following statements hold: 1) $\left.\operatorname{LM}\left(Q_{1}, \circ\right) \triangleleft \operatorname{LM}(\operatorname{Hol}(Q, \cdot), \circ) ; 2\right) R M\left(Q_{1}, \circ\right) \triangleleft$ $R M(\operatorname{Hol}(Q, \cdot), \circ)$.

Proof. 1) $(Q, \cdot) \cong\left(Q_{1}, \circ\right)$ implies $\operatorname{LM}(Q, \cdot) \cong \operatorname{LM}\left(Q_{1}, \circ\right)$. Moreover, $\operatorname{LM}\left(Q_{1}, \circ\right)$ is a subgroup of $\operatorname{LM}(\operatorname{Hol}(Q, \cdot), \circ)$. Now, let $L_{(\varepsilon, x)}^{(\circ)} \in$ $\operatorname{LM}\left(Q_{1}, \circ\right)$ and $L_{(\beta, b)}^{(\circ)} \operatorname{LM}(\operatorname{Hol}(Q, \cdot), \circ)$, then:

$$
\begin{gathered}
L_{(\beta, b)}^{(\circ)} L_{(\varepsilon, x)}^{(\circ)} L_{(\beta, b)}^{(\circ)-1}(\alpha, a)=L_{(\beta, b)}^{(\circ)} L_{(\varepsilon, x)}^{(\circ)}\left(\beta^{-1} \alpha, \beta^{-1} \alpha(b) \cdot a\right)= \\
L_{(\beta, b)}^{(\circ)}\left(\beta^{-1} \alpha, \beta^{-1} \alpha(x) \cdot\left(\beta^{-1} \alpha(b) \backslash a\right)\right)=
\end{gathered}
$$

$$
\left(\alpha, \beta^{-1} \alpha(b) \cdot\left(\beta^{-1} \alpha(x) \cdot\left(\beta^{-1} \alpha(b) \backslash a\right)\right)\right)=L_{(\varepsilon, c)}^{(\circ)}(\alpha, a),
$$

for $\forall(\alpha, a) \in \operatorname{Hol}(Q, \cdot)$, where $\alpha(c) \cdot a=\beta^{-1} \alpha(b) \cdot\left(\beta^{-1} \alpha(x)\right.$. $\left.\left(\beta^{-1} \alpha(b) \backslash a\right)\right)$. Thus,

$$
\begin{equation*}
L_{(\beta, b)}^{(\circ)} L_{(\varepsilon, x)}^{(\circ)} L_{(\beta, b)}^{(\circ)-1} \in L M\left(Q_{1}, \circ\right) . \tag{3}
\end{equation*}
$$

Analogously,

$$
\begin{gathered}
L_{(\beta, b)}^{(\circ)-1} L_{(\varepsilon, x)}^{(\circ)} L_{(\beta, b)}^{(\circ)}(\alpha, a)=L_{(\beta, b)}^{(\circ)-1} L_{(\varepsilon, x)}^{(\circ)}(\beta \alpha, \alpha(b) \cdot a)= \\
L_{(\beta, b)}^{(\circ-1}(\beta \alpha, \beta \alpha(x) \cdot(\alpha(b) \cdot a))= \\
\quad(\alpha, \alpha(b) \backslash(\beta \alpha(x) \cdot(\alpha(b) \cdot a)))=L_{(\varepsilon, g)}^{(\circ)}(\alpha, a),
\end{gathered}
$$

for $\forall(\alpha, a) \in \operatorname{Hol}(Q, \cdot)$, where $\alpha(g) \cdot a=\alpha(b) \backslash(\beta \alpha(x) \cdot(\alpha(b) \cdot a))$. So,

$$
\begin{equation*}
L_{(\beta, b)}^{(\circ)-1} L_{(\varepsilon, x)}^{(\circ)} L_{(\beta, b)}^{(\circ)} \in L M\left(Q_{1}, \circ\right) \tag{4}
\end{equation*}
$$

(3) and (4) imply that $\operatorname{LM}\left(Q_{1}, \circ\right) \triangleleft \operatorname{LM}(\operatorname{Hol}(Q, \cdot), \circ)$. The proof of the second relation is similar.

Remark 3. The function $\xi: \operatorname{LM}(\operatorname{Hol}(Q, \cdot)) \mapsto \operatorname{Aut}(Q, \cdot)$, $\xi\left(L_{\left(\alpha_{1}, x_{1}\right)}^{\delta_{1}} L_{\left(\alpha_{2}, x_{2}\right)}^{\delta_{2}}, \ldots, L_{\left(\alpha_{n}, x_{n}\right)}^{\delta_{n}}\right)=\alpha_{1}^{\delta_{1}} \alpha_{2}^{\delta_{2}} \ldots \alpha_{n}^{\delta_{n}}$, where $\delta_{i}=1$ or -1 , for every $i=1,2, \ldots, n$, is a surjective homomorphism with $\operatorname{Ker} \xi=$ $\operatorname{LM}\left(Q_{1}, \circ\right)$, so $\operatorname{LM}(\operatorname{Hol}(Q, \cdot)) / L M\left(Q_{1}, \circ\right) \cong \operatorname{Aut}(Q, \cdot)$.

References

[1] V. Belousov. Parastrofic-orthogonal quasigroups. Quasigroups and Related Systems, 2005, 14, pp. 3-51.
[2] F.E. Bennett. Quasigroups, in "Handbook of Combinatorial Designs". Eds. C.J. Colbourn and J.H. Dinitz, CRC Press, 1996.
[3] H.O. Pflugfelder. Quasigroups and loops: introduction. Sigma Series in Pure Math, 1990.
[4] P. Syrbu. On π-quasigroups isotopic to abelian groups. Bul. Acad. Stiinte Repub. Mold. Mat., 2009, 3(61), pp. 109-117.

David Ceban ${ }^{1}$, Parascovia Syrbu ${ }^{2}$
${ }^{1}$ State University of Moldova
${ }^{2}$ State University of Moldova

Email: davidcheban@yahoo.com Email: syrbuviv@yahoo.com

[^0]: (C) 2014 by D. Ceban, P. Syrbu

