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Convex graph covers

Radu Buzatu, Sergiu Cataranciuc

Abstract

We study some properties of minimum convex covers and min-
imum convex partitions of simple graphs. We establish existence
of graphs with fixed number of minimum convex covers and mini-
mum convex partitions. It is known that convex p-cover problem
is NP-complete for p ≥ 3 [5]. We prove that this problem is NP-
complete in the case p = 2. Also, we study covers and partitions
of graphs when respective sets are nontrivial convex.

Keywords: Convexity, graphs, convex covers, convex parti-
tions.

1 Introduction

We denote by G = (X; U) a simple graph with vertex set X and edge
set U . The set of all vertices adjacent to x ∈ X in G is denoted by
Γ(x).

Now we remind some notions defined in [1]: a) metric segment
〈x, y〉 is the set of all vertices lying on a shortest path between vertices
x, y ∈ X; b) a set S ⊆ X is called convex if 〈x, y〉 ⊆ S for all x, y ∈ S;
c) convex hull of S ⊆ X, denoted d − conv(S), is the smallest convex
set containing S.

A family of sets is called convex cover of G = (X; U) and is denoted
by P(G) if the following conditions hold:

1) every set of P(G) is convex in G;
2) X =

⋃
Y ∈P(G) Y ;

3) Y 6⊆
⋃
Z∈P(G)
Z 6=Y

Z for every Y ∈ P(G).
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If |P(G)| = p, then this family is called convex p-cover of G and is
denoted by Pp(G). The concept of convex p-cover of a graph was
defined in [5]. In particular, a family P(G) is called convex partition
of graph G if it is a convex cover of G and any two sets of P(G) are
disjoint. A convex p-cover is called convex p-partition if it is a convex
partition of a graph. Clearly, every graph G has convex 1-cover and
convex n-cover. By Claude Berge [3], a set S ⊆ X is a clique if every
pair of vertices of S is adjacent in G. If Pp(G) is a convex p-partition
and all the sets of Pp(G) are cliques, then Pp(G) is called clique p-
partition of graph G.

Definition 1. A convex cover P(G) of graph G = (X; U) is called
nontrivial convex cover if every set Y ∈ P(G) satisfies the inequalities:
3 ≤ |Y | ≤ |X| − 1. Consequently the elements of P(G) are called
nontrivial convex sets.

Likewise, if a nontrivial convex cover P(G) is a convex partition,
we say that P(G) is a nontrivial convex partition.

Definition 2. [5] Convex cover number ϕc(G) of a graph G is the
least integer p ≥ 2 for which G has a convex p-cover. Similarly, convex
partition number θc(G) of a graph G is the least integer p ≥ 2 for which
G has a convex p-partition.

Further, the least integer p ≥ 2 for which graph G has a nontrivial
convex p-cover is said to be nontrivial convex cover number ϕcn(G).
In the same way, the least integer p ≥ 2 for which graph G has a
nontrivial convex p-partition is said to be nontrivial convex partition
number θcn(G).

Indeed, there are graphs for which there are no nontrivial convex
p-covers or nontrivial convex p-partitions or both. For example, every
convex simple graph has no nontrivial convex covers. A graph G is
called convex simple if it does not contain nontrivial convex set [2].

Let us introduce the following notions.

Minimum convex cover Pϕc(G) is the convex p-cover of graph G
such that p = ϕc(G);
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Minimum convex partition Pθc(G) is the convex p-partition of
graph G such that p = θc(G);

Minimum nontrivial convex cover Pϕcn(G) is the nontrivial convex
p-cover of graph G such that p = ϕcn(G);

Minimum nontrivial convex partition Pθcn(G) is the nontrivial con-
vex p-partition of graph G such that p = θcn(G).

It is obvious that for any graph G we have ϕc(G) ≤ θc(X).
As above, if Pϕcn(G) and Pθcn(G) exist, then ϕcn(G) ≤ θcn(G).
If Pϕcn(G) exists, then ϕc(G) ≤ ϕcn(G). If Pθcn(G) exists, then
θc(G) ≤ θcn(G).

Also, we introduce the following concept.

Definition 3. A vertex x ∈ X is called resident in P(G) if x belongs
to only one set of P(G).

By definition, every set ofP(G) contains at least one resident vertex
in P(G). If P(G) is a convex partition of G, then all vertices of every
set of P(G) are resident in P(G).

This paper is organized as follows. In Section 2 we describe some
properties of minimum convex graph covers. In Section 3 we establish
conditions for existence of graph G with given numbers ϕc(G), θc(G)
and ϕcn(G), θcn(G). In Section 4 we prove that it is NP-complete to
decide if a graph has a convex 2-cover. Deciding if a graph has convex
2-cover was declared an open problem in [5]. In addition, we prove that
it is NP-complete to decide if a graph has nontrivial convex p-cover or
nontrivial convex p-partition for p ≥ 2.

2 Properties of minimum convex graph covers

Let Pϕc(G) be the minimum convex cover of a simple connected graph
G.

Theorem 1. If ϕc(G) ≥ 3, then for every two sets A,B ∈ Pϕc(G),
A 6= B, there exists C ∈ Pϕc(G)\{A,B} such that there exist a ∈ A,
b ∈ B, c ∈ C\(A ∪B), where c ∈ 〈a, b〉.
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Proof. Assume the converse. Suppose there exist sets A,B ∈
Pϕc(G), A 6= B, such that for all vertices a ∈ A, b ∈ B, we have
〈a, b〉 ⊆ A ∪ B. Thus, since d − conv(A ∪ B) = A ∪ B, we get the
reduced convex cover number ϕc(G). As ϕc(G) is the least integer for
which graph G has a convex p-cover, a contradiction follows. �

Theorem 2. If ϕc(G) ≥ 3, then for each set A ∈ Pϕc(G), there exist
B,C ∈ Pϕc(G)\{A}, B 6= C, such that there exist a ∈ A\(B ∪ C),
b ∈ B, c ∈ C, where a ∈ 〈b, c〉.

Proof. Assume the converse. Suppose there exists a set A ∈ Pϕc(G)
such that for every two sets B,C ∈ Pϕc(G)\{A}, B 6= C, we have
A ∩ (〈b, c〉\(B ∪ C)) = ∅ for all vertices b ∈ B, c ∈ C. This yields that

d− conv(
⋃

S∈Pϕc (G)\{A}

S) =
⋃

S∈Pϕc (G)\{A}

S.

We obtain the convex 2-cover

P2(G) = Pϕc(G) = {
⋃

S∈Pϕc (G)\{A}

S,A}.

Finally, ϕc(G) = 2. This contradicts the condition of the theorem that
ϕc(G) ≥ 3. �

Considering nontrivial convex cover as a particular case of convex
cover, Theorems 1 and 2 have two consequences.

Corollary 1. If ϕcn(G) ≥ 3, then for every two sets A,B ∈ Pϕcn(G),
A 6= B, there exists C ∈ Pϕcn(G)\{A,B} such that there exist a ∈ A,
b ∈ B, c ∈ C\(A ∪B), where c ∈ 〈a, b〉.

Corollary 2. If ϕcn(G) ≥ 3, then for each set A ∈ Pϕcn(G), there exist
B,C ∈ Pϕcn(G)\{A}, B 6= C, such that there exist a ∈ A\(B ∪ C),
b ∈ B, c ∈ C, where a ∈ 〈b, c〉.

Let α(G) be the vertex independence number of a graph G [3]. Next
theorem is true.
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Theorem 3. Let G = (X; U) be a simple connected graph and let S
be a family of subsets of X with properties:

a) |S| ≥ 2;

b) each Y ∈ S is a clique;

c) X\
⋃
Y ∈S Y is not a clique;

d) Y ∩ Z = ∅ for all Y, Z ∈ S;

e) for each set Y ∈ S, the equality Γ(y) = (Y \{y}) ∪ (X\
⋃
Z∈S Z)

is satisfied for every vertex y ∈ Y .

Then the following conditions hold:

a) ϕc(G) ≥ α(G), θc(G) ≥ α(G);

b) if Pϕcn(G) exists, then ϕcn(G) ≥ α(G);

c) if Pθcn(G) exists, then θcn(G) ≥ α(G);

d) every convex set of G is a clique.

Proof. Consider two nonadjacent vertices a, b of X\
⋃
Y ∈S Y and

two vertices y, z such that y ∈ Y , z ∈ Z, where Y,Z ∈ S, Y 6= Z. Note
that y, z are by definition nonadjacent.

From property e), it follows that
⋃
Y ∈S Y ⊆ 〈a, b〉 andX\

⋃
Y ∈S Y ⊆

〈y, z〉. Further, X\
⋃
Y ∈S Y ⊆ d − conv(

⋃
Y ∈S Y ) and

⋃
Y ∈S Y ⊆

d − conv(X\
⋃
Y ∈S Y ). Furthermore, we have d − conv(

⋃
Y ∈S Y ) =

d − conv(X\
⋃
Y ∈S Y ) = X. Thus, there is no convex set containing

vertices a, b or y, z. This means that every convex set is a clique.

Let M ⊆ X be the maximum independent set of G. In addition,
from property e) it follows that M ⊆ X\

⋃
Y ∈S Y , or M ⊆

⋃
Y ∈S Y

such that every element of M belongs to exactly one set of S. By the
above, every convex cover of graph G has at least |M | = α(G) sets.
This implies the inequalities:

ϕc(G) ≥ α(G), θc(G) ≥ α(G).

Moreover, if Pϕcn(G) exists, then ϕcn(G) ≥ α(G). Also, if Pθcn(G)
exists, then θcn(G) ≥ α(G). �
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3 Existence of graphs with minimum convex
covers

In this section several theorems regarding existence of simple connected
graphs with fixed number of minimum convex covers and minimum
convex partitions are proved.

For all n ∈ N , n ≥ 2, there exists a graph on n vertices, which has
a convex 2-cover or a convex 2-partition or both. For example, chain
graph on n ≥ 2 vertices has a convex 2-cover and a convex 2-partition.
In addition, for every graph that has a nontrivial convex 2-cover the
inequality n ≥ 4 holds, because every set belonging to a convex 2-cover
is nontrivial and has at least one resident vertex. On the other hand,
for every graph that has a nontrivial convex 2-partition the inequality
n ≥ 6 is satisfied, because its sets are nontrivial and disjoint.

It is clear that for every graph G on n vertices, where n = 2 or
n = 3, we have ϕc(G) = θc(G) = 2.

First, we prove theorems regarding existence of graphs with fixed
numbers ϕc(G) and θc(G).

Theorem 4. If G is a simple connected graph on n ≥ 4 vertices, then
ϕc(G) ≤ n− 2.

Proof. We distinguish two possible cases.
1) Let G be a graph that is not a convex simple graph. Suppose

G has a nontrivial convex set S. Then, since |S| ≥ 3, we obtain a
convex p-cover of G such that p = n − |S| + 1. This convex p-cover
consists of the set S and n − |S| singletons (sets consisting of exactly
one vertex). Substituting |S| = n+ 1− p in |S| ≥ 3, we get p ≤ n− 2.
So, ϕc(G) ≤ n− 2.

2) Let G be a convex simple graph.
If n = 4, then G is a cycle. In this case, G has a convex 2-cover

such that both convex sets consist of two adjacent vertices of G.
If n ≥ 5, then graph G contains vertices x, y, such that Γ(x) = Γ(y)

and |Γ(x)| ≥ 3 [2]. We choose two vertices u, v of Γ(x). It is clear that
u and v are nonadjacent, otherwise G is not a convex simple graph,
because {x, u, v} is a triangle, which is a nontrivial convex set. We get
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xp x1x2

y2 y1
…

z1

z2

zn-p-2……

Figure 1. Graph G on n vertices such that 3 ≤ p ≤ n − 2, θc(G) =
ϕc(G) = p

a convex cover of G that consists of p = n− 2 sets: {x, v}, {y, u} and
p− 4 singletons.

By definition of ϕc(G), we have ϕc(G) ≤ n− 2. �

Corollary 3. If G is a simple connected graph on n ≥ 4 vertices, then
θc(G) ≤ n− 2.

Theorem 5. For any p, n ∈ N , 2 ≤ p ≤ n − 2, there exists a simple
connected graph G on n vertices such that ϕc(G) = p.

Proof. If p = 2, then take a chain graph G on n vertices for which
ϕc(G) = 2.

If p ≥ 3, we construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1, x2, . . . , xp}, where any two vertices of X1 are
nonadjacent, i.e., X1 is an independent set;

Step 2. if p < n − 2, then define X2 = X1 ∪ Z, where Z =
{z1, z2, . . . , zn−p−2} such that Z ∪ {x1} is a clique. Otherwise,
X2 = X1 and Z = ∅;

Step 3. X = X2 ∪ {y1, y2}, where Γ(y1) = Γ(y2) = X2.

The resulted graph G is represented in Figure 1.

It is easy to verify that |X| = n.

Since X1 is a maximum independent set in G, the independence
number of this graph is α(G) = |X1| = p. The family {{y1}, {y2}}
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satisfies the conditions of Theorem 3 in G. Thus, ϕc(G) ≥ p and every
convex set of G is a clique.

It remains to show that there exists a convex p-cover of graph G.

Graph G has the convex p-cover Pp(G) that consists of cliques
{x1, y1} ∪ Z, {x2, y2}, {x3}, {x4},. . ., {xp}.

So, since Pp(G) is the convex p-cover of obtained graph G and
ϕc(G) ≥ p, it follows that Pp(G) is the minimum convex cover of G
and ϕc(G) = p. �

Corollary 4. For any p, n ∈ N , 2 ≤ p ≤ n − 2, there exists a simple
connected graph G on n vertices such that θc(G) = p.

Further, a few theorems regarding existence of graphs with fixed
numbers ϕcn(G) and θcn(G) are proposed.

Theorem 6. For any p, n ∈ N , 2 ≤ p ≤ bn3 c, there exists a simple
connected graph G on n vertices such that θcn(G) = p.

Proof. We construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1,1, x1,2, x2,1, x2,2, . . . , xp,1, xp,2}, where xi,1 ∼ xi,2
for 1 ≤ i ≤ p;

Step 2. if 3p < n, then define X2 = X1 ∪ Z, where Z = {z1, z2, . . . ,
zn−3p} such that Z ∪{x1,1, x1,2} is a clique. Otherwise, X2 = X1

and Z = ∅;
Step 3. X = X2 ∪ Y , where Y = {y1, y2, . . . , yp} such that Γ(yi) = X2

for 1 ≤ i ≤ p.

The obtained graph G is represented in Figure 2.

It is easy to verify that |X| = n.

Since Y is a maximum independent set inG, the independence num-
ber of this graph is α(G) = |Y | = p. The family {{y1}, {y2}, . . . , {yp}}
satisfies the conditions of Theorem 3 in G. Thus, θc(G) ≥ p and if
there exists Pθcn(G), then θcn(G) ≥ p. Also, every convex set of G is
a clique.

It remains to show that there exists a nontrivial convex p-partition
of graph G.
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……

x1,2 x2,2x2,1

y1 y2 yp

z1

x1,1 xp,2xp,1……

…

zn-3p

Figure 2. Graph G on n vertices such that 2 ≤ p ≤ bn3 c, θcn(G) = p

Graph G has a nontrivial convex p-partition Pp(G) that con-
sists of cliques {x1,1, x1,2, y1} ∪ Z, {x2,1, x2,2, y2}, {x3,1, x3,2, y3},. . .,
{xp,1, xp,2, yp}.

So, since Pp(G) is a nontrivial convex p-partition of obtained graph
G and θcn(G) ≥ p, it follows that Pp(G) is the minimum nontrivial
convex partition of G and θcn(G) = p. �

Let C4 be a cycle on 4 vertices.

Theorem 7. If G is a simple connected graph on 4 vertices, then
ϕcn(G) = 2 if and only if G 6= C4.

Proof. By definition of nontrivial convex cover, G has a nontrivial
convex p-cover if and only if p = 2. In Figure 3 simple connected
graphs on 4 vertices are represented. It can be easily checked that
every graph from Figure 3, except the cycle C4, has a nontrivial convex
2-cover. Now, if we recall that nontrivial convex cover number is the
least integer p ≥ 2 for which graph G has a nontrivial convex p-cover,
we get ϕcn(G) = 2 for every simple connected graph G on 4 vertices,
where G 6= C4. �

Theorem 8. If G is a simple connected graph on n ≥ 5 vertices, then
ϕcn(G) < n− 2.

Proof. There is no a nontrivial convex n-cover or a nontrivial convex
(n− 1)-cover, because every convex set of nontrivial convex cover has
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:4C

Figure 3. All simple connected graphs on 4 vertices

at least one resident vertex in this convex cover and contains at least
three vertices.

Let us prove that for every graph G the inequality ϕcn(G) < n−2 is
satisfied. The proof is by reductio ad absurdum. We can assume with-
out loss of generality that there exists a graph G = (X ,U) such that
ϕcn(G) = n − 2. It is required that n ≥ 5, consequently ϕcn(G) ≥ 3.
Let Pϕcn(G) be the minimum nontrivial convex cover of G. In this
case, every set S ∈ Pϕcn(G) satisfies equality |S| = 3 and contains
exactly one resident vertex in Pϕcn(G). Further, there are two ver-
tices x, y ∈ X, which are common for all sets of Pϕcn(G). Notice that
x ∼ y, otherwise connectivity of nontrivial convex sets of Pϕcn(G) im-
plies Γ(x) = Γ(y) = X\{x, y} and furthermore d − conv({x, y}) = X.
According to Corollaries 1 and 2, all vertices of set X\{x, y} are
nonadjacent in G. Finally, we obtain a nontrivial convex 2-cover
P2(G) = Pϕcn(G) = {{x, y, z}, X\{z}}, where z ∈ X\{x, y}. Thus,
ϕcn(G) = 2. This contradiction concludes the proof. �

Theorem 9. For any p, n ∈ N , 2 ≤ p ≤ n − 3, there exists a simple
connected graph G on n vertices such that ϕcn(G) = p.

Proof. We construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1, x2, . . . , xp}, where all vertices of X1 are nonad-
jacent, i.e., X1 is an independent set;
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……xp x1x2

y2 y3
…

y1 z1

z2

zn-p-3

Figure 4. Graph G on n vertices such that 2 ≤ p ≤ n− 3, ϕcn(G) = p

Step 2. if p < n − 3, then define X2 = X1 ∪ Z, where Z =
{z1, z2, . . . , zn−p−3} such that Z ∪ {x} is a clique for all x ∈ X1.
Otherwise, X2 = X1 and Z = ∅;

Step 3. X = X2 ∪ Y , where Y = {y1, y2, y3} such that Γ(y1) = X1 ∪
{y2}, Γ(y2) = X2 ∪ {y1, y3} and Γ(y3) = X2 ∪ {y2}.

The obtained graph G is represented in Figure 4.

It is easy to verify that |X| = n.

Since X1 is a maximum independent set in G, the indepen-
dence number of this graph is α(G) = |X1| = p. The family
{{x1}, {x2}, . . . , {xp}} satisfies the conditions of Theorem 3 inG. Thus,
ϕc(G) ≥ p and if there exists Pϕcn(G), then ϕcn(G) ≥ p. Also, every
convex set of G is a clique.

It remains to show that there exists a nontrivial convex p-cover of
graph G.

Graph G has a nontrivial convex p-cover Pp(G) that consist of
cliques {x1, y2, y3} ∪ Z, {x2, y1, y2}, {x3, y1, y2}, . . ., {xp, y1, y2}.

So, since Pp(G) is a nontrivial convex p-cover of obtained graph
G and ϕcn(G) ≥ p, it follows that Pp(G) is the minimum nontrivial
convex cover of G and ϕcn(G) = p. �

4 NP-completeness

Let us examine the complexity of convex cover problems.
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Deciding whether a graph G has a convex p-cover, for p ≥ 2, is said
to be convex p-cover problem. Similarly, deciding whether a graph G
has a convex p-partition, for p ≥ 2, is said to be convex p-partition
problem. In the same way, we introduce nontrivial convex p-cover and
nontrivial convex p-partition problems, where nontrivial convex covers
and nontrivial convex partitions are considered.

It was shown in [4], [6] that the convex p-partition problem is NP-
complete for p ≥ 2. Also, we know that the convex p-cover problem is
NP-complete for p ≥ 3 [5]. Deciding if a graph has a convex 2-cover
was declared an open problem in the paper [5].

We prove that the convex 2-cover problem is NP-complete.

The complexity of this case is proved by reducing the NP-complete
1-IN-3 3 SAT problem [8] to a convex 2-cover problem.

1-IN-3 3 SAT problem:

Instance: Set V = {v1, v2, . . . , vn} of variables, collection C =
{c1, c2, . . . , cm} of clauses over V such that each clause c ∈ C has
|c| = 3 and no negative literals.

Question: Is there a truth assignment for V such that each clause
in C has exactly one true literal?

We say that C is satisfiable if there exists a truth assignment for
V such that C is satisfiable and each clause in C has exactly one true
variable.

Theorem 10. The convex 2-cover problem is NP-complete.

Proof. We mention that this problem is in NP, because verifying if
a set is convex can be done in polynomial time [7]. Further, we reduce
1-IN-3 3 SAT to the convex 2-cover problem. First, we determine the
structure of a particular graph G = (X; U) for a convex 2-cover from
a generic instance (V,C) of 1-IN-3 3 SAT. Next, we prove that C is
satisfiable if and only if G has a convex 2-cover. For this purpose,
we prove that a convex 2-cover of G defines a truth assignment that
satisfies (V,C). At the same time, we prove that a truth assignment
that satisfies (V,C) defines a convex 2-cover of G.

Let graph G be given by vertex set X and edge set U .
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The vertex set X consists of:

a) V = {v1, v2, . . . , vn}, Y = {f, y1, y2, y3, y4, y5},
Z = {t, z1, z2, z3, z4, z5};

b) F = {fj |1 ≤ j ≤ m}, T = {tj |1 ≤ j ≤ m};
c) L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3}, L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3},

Q = {qij |1 ≤ j ≤ m, 1 ≤ i ≤ 3};

We get X = V ∪ Y ∪ Z ∪ F ∪ T ∪ L ∪ Q ∪L. Every variable vi ∈ V
corresponds to vertex vi ∈ V. Every clause cj ∈ C corresponds to
eleven vertices: fj , l

1
j , l

2
j , l

3
j , l

1
j , l

2
j , l

3
j , q

1
j , q

2
j , q

3
j , tj .

The edge set U satisfies conditions:

a) V ∪Q is a clique in G;

b) Γ(f) = V ∪Q ∪ F ∪ {y3, y4} and Γ(t) = V ∪Q ∪ T ∪ {z3, z4};
c) Γ(y5) = F ∪ {y3, y4} and Γ(z5) = T ∪ {z3, z4};
d) there exist the following edges: {y1, y3}, {y1, y4}, {y2, y3},
{y2, y4}, {z1, z3}, {z1, z4}, {z2, z3}, {z2, z4};

e) every clause cj = {va, vb, vc}, 1 ≤ j ≤ m, corresponds
to eighteen edges: {l1j , va}, {l2j , vb}, {l3j , vc}, {l1j , fj}, {l2j , fj},
{l3j , fj}, {l

1
j , tj}, {l

2
j , tj}, {l

3
j , tj}, {q1j , l

1
j}, {q2j , l

2
j}, {q3j , l

3
j},

{l1j , l
2
j}, {l1j , l

3
j}, {l2j , l

1
j}, {l2j , l

3
j}, {l3j , l

1
j}, {l3j , l

2
j}.

We skip the trivial case |C| = 1 of 1-IN-3 3 SAT problem. Let us
consider |C| ≥ 2.

If G = (X; U) has a convex 2-cover, then C is satisfiable.

Let P2(G) = {Sf , St} be a convex 2-cover of G. For every i, j ∈
{1, 2} we have d− conv({yi, zj}) = X.

Let y1, y2 ∈ Sf , z1, z2 ∈ St and let S1 = {y3, y4, y5, f} ∪ F , S2 =
{z3, z4, z5, t} ∪ T .

Let us enumerate some properties:

Property 1: S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

We notice what S1 ⊆ d − conv({y1, y2}), S2 ⊆ d − conv({z1, z2}).
Consequently we have S1 ⊆ Sf , S2 ⊆ St.
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y1 y3

y2 y4
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z4 z2

z5
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1
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2
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3
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1
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2
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3
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1
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2
2l

3
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2v
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V L

Figure 5. The convex 2-cover of the graph G for the instance (V,C) =
({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}})

Moreover, for each u ∈ F ∪ {f}, we get d − conv({u, t} ∪ T ) ⊆
d− conv({f} ∪ F ∪ S2) ⊆ d− conv(S1 ∪ S2) ⊆ d− conv(Sf ∪ St) = X.
This implies that u 6∈ St for each u ∈ F ∪ {f}. Similarly, for each
u ∈ T ∪ {t}, we get d − conv({u, f} ∪ F ) ⊆ d − conv({t} ∪ T ∪ S1) ⊆
d− conv(S1 ∪ S2) ⊆ d− conv(Sf ∪ St) = X. This implies that u 6∈ Sf
for each u ∈ T ∪ {t}. Thus, S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

Property 2: Sets L,V, Q,L are uniquely interdependent.

If vertex lij belongs to St, then Γ(lij) ∩V ⊆ St and lkj belongs to St
for 1 ≤ k ≤ 3, k 6= i.

If vertex vi belongs to St, then Γ(vi) ∩ L ⊆ St and for all laj ∈
Γ(vi) ∩ L vertices lkj belong to St for 1 ≤ k ≤ 3, k 6= a.

Vertex lij belongs to Sf if and only if qij belongs to Sf . If vertex lij
belongs to Sf , then L′ = {lkj |1 ≤ k ≤ 3, k 6= i} ⊆ Sf and Γ(lkj ) ∩V is

contained in Sf for all lkj ∈ L′.

Property 3: Exactly one vertex of Lj = {l1j , l2j , l3j} belongs to St,

for 1 ≤ j ≤ m, and exactly one vertex of Lj = {l1j , l
2
j , l

3
j} belongs to

Sf , for 1 ≤ j ≤ m.
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Exactly one vertex of every set Lj = {l1j , l2j , l3j}, 1 ≤ j ≤ m, belongs

to St. In the converse case, if two vertices {laj , lbj} of Lj belong to
St, then fj belongs to St. By Property 1, we get a contradiction.
If no vertex of Lj = {l1j , l2j , l3j} belongs to St, then Lj ⊆ Sf , Lj =

{l1j , l
2
j , l

3
j} ⊆ Sf and tj belongs to Sf . Now by Property 1, we have a

contradiction.

In the same way, exactly one vertex of every set Lj = {l1j , l
2
j , l

3
j},

1 ≤ j ≤ m, belongs to Sf .

We associate V with V and L with C such that convex 2-cover
represents a truth assignment for V, where the variable vi is true if
and only if the vertex vi ∈ St.

It follows from Properties 1, 2 and 3 that if G has a convex 2-cover
P2(G) = {Sf , St}, then C is satisfiable. Let us remark that sets Sf ,
St are nontrivial and disjoint.

If C is satisfiable, then G = (X; U) has a 2-convex cover.

Suppose that there exists a truth assignment which satisfies (V,C).
We construct a convex 2-cover P2(G) = {Sf , St} as follows:

Step 1. Define St = {z1, z2, z3, z4, z5, t} ∪ T ;

Step 2. For each true variable vi of V we add vertex vi and the set
L′ = Γ(vi) ∩ L to St and for each laj ∈ L′ we add vertices qbj , l

b
j

to St such that lbj ∼ laj and qbj ∼ l
b
j ;

Step 3. Define Sf = X\St.

Clearly, for the resulting convex 2-cover P2(G) = {Sf , St} Prop-
erties 1, 2 and 3 are satisfied. Hence, if C is satisfiable, then G has
convex 2-cover. Note also that the sets Sf and St are nontrivial and
disjoint.

In Figure 5 the graph G, which corresponds to a particular instance
(V,C) = ({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}}) is represented. Sets
Q ∪ V ∪ {f} and Q ∪ V ∪ {t} generate cliques in G. White vertices
belong to St and black vertices belong to Sf . The white vertices of V
represent the variables of V set to true. All edges between L and L
are represented in Figure 6. �
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2l
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Figure 6. Edges between L and L

Now if we recall that convex p-cover problem is NP-complete, for
p ≥ 3, we can affirm that convex p-cover problem is NP-complete for
p ≥ 2.

Corollary 5. Convex 2-partition problem, nontrivial convex 2-cover
problem and nontrivial convex 2-partition problem are NP-complete.

Proof. By construction in the previous theorem of a particular
graph G = (X; U) for convex 2-cover problem from a generic instance
(V,C) of 1-IN-3 3 SAT problem, we conclude that G can be covered
only by nontrivial disjoint convex sets. Hence, every convex 2-cover is a
convex 2-partition in G. Moreover, every convex 2-cover is a nontrivial
convex 2-cover in G. �

Taking into account Theorem 10 and Corollary 5, we affirm that
Theorem 10 is stronger than Theorem 4 in [6], which proves only NP-
completeness of convex 2-partition problem.

Furthermore, we prove that nontrivial convex p-cover problem, for
p ≥ 3, is NP-complete. We reduce NP-complete clique p-partition
problem, for p ≥ 3 [9], to a nontrivial convex p-cover problem.

Clique p-partition problem:
Instance: Graph G = (X; U) and p ∈ N , p ≥ 3.
Question: Is there a partition of X into p disjoint cliques?
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Theorem 11. The nontrivial convex p-partition problem is NP-
complete for p ≥ 3.

Proof. The problem is in NP, because determining if a set is convex
can be done in polynomial time [7].

Let G = (X; U) be a generic graph of clique p-partition problem.
Without loss of generality, it can be assumed that X is not a clique.
We obtain a particular graph G′ = (X ′; U ′) of nontrivial convex p-
partition problem from G by adding auxiliary sets Y = {y1, y2, . . . , yp}
and Z = {z1, z2, . . . , zp} to X such that X ′ = X ∪ Y ∪ Z, where
Γ(yi) = X ∪ {zi} and Γ(zi) = X ∪ {yi} for 1 ≤ i ≤ p.

Graph G′ satisfies the conditions of Theorem 3. Thus, every convex
set of G′ is a clique.

If Pp(G) is a clique p-partition of G, p ≥ 3, then we obtain a
nontrivial convex p-partition Pp(G′) of G′ by addition of set {yi, zi} to
Xi, where Xi ∈ Pp(G), for 1 ≤ i ≤ p.

On the other hand, a nontrivial convex p-partitionPp(G′) ofG′, p ≥
3, implies existence of a clique p-partition Pp(G) of G by subtraction
of set {yi, zi} from X ′i , where X ′i ∈ Pp(G′), for 1 ≤ i ≤ p. �

Corollary 6. The nontrivial convex p-cover problem is NP-complete
for p ≥ 3.

Proof. The problem is also in NP, because determining if a set is
convex can be done in polynomial time [7].

We know that any proper convex set of graph G′ constructed in
previous theorem, is a clique. Let Pp(G′) be a nontrivial convex p-
cover of G′. We get a family of sets P = {X1, X2, . . . , Xp} such that
Xi = X ′i\{yi, zi}, where X ′i ∈ Pp(G′) for 1 ≤ i ≤ p. Removing from
P all sets contained in the union of other sets of the family P we
obtain a convex k-partition Pk(G) of G such that k ≤ p, where G
is a graph of clique p-partition problem. Note also that if any graph
has a clique q-partition and there exists a set S of this partition that
is not a singleton, then dividing S into two cliques, we get a clique
(q + 1)-partition. Thus, G has a clique p-partition.

On the other hand, we know from previous theorem that every
clique p-partition of G, p ≥ 3, implies existence of nontrivial convex
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p-partition of G′. Now, if we recall that every nontrivial convex p-
partition is a nontrivial convex p-cover, we deduce that every clique
p-partition of G, p ≥ 3, implies existence of nontrivial convex p-cover
of G′. �

We affirm that nontrivial convex p-cover problem and nontrivial
convex p-partition problem are NP-complete for p ≥ 2. Indeed, this
follows from Theorems 11 and from Corollaries 5 and 6.

5 Conclusion

We prove that the problem of deciding if a graph has a convex 2-
cover is NP-complete. Since Theorem 10 proves NP-completeness of
convex 2-cover problem and Corollary 5, as consequence of Theorem
10, proves NP-completeness of convex 2-partition problem, we conclude
that Theorem 10 is stronger than Theorem 4 in [6], which proves only
NP-completeness of convex 2-partition problem. We affirm that convex
p-cover problem and convex p-partition problem are NP-complete for
p ≥ 2.

Also, we prove that it is NP-complete to decide if a graph has a
nontrivial convex p-cover or nontrivial convex p-partition for p ≥ 2.

We discover some properties of minimum convex covers and mini-
mum convex partitions of graphs. We establish conditions for existence
of graph G with given numbers ϕc(G), θc(G) and ϕcn(G), θcn(G).
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