

DERIVATIVES OF 3-METHYL-5-(METHYLSULFANYL)-4H-1,2,4-TRIAZOL-4-AMINE WITH ANTIMICROBIAL AND ANTIOXIDANTIVES PROPERTIES

A. Rusnac, R. Rusnac, O. Garbuz, Acad. A. Gulea

Moldova State University, Moldova

Recently the chemistry of triazoles and their derivatives received considerable attention due interesting their synthesis and important biological activity. Triazole compounds of groups N,N- dimethyl eurydice in the literature are lacking. The literature investigation shows that derivatives 1,2,4-triazole presents a wide range of biological activities including antiproliferative, antibacterial, antituberculosis. We have aimed at the synthesis of 1,1-dimethyl-3-(3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea research to determine the structure and biological properties.

The dependence of yield of 1,1-dimethyl-3- (3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl) thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea was investigated in dependence of factors different. It was found that 4-amino-5-methyl-4*H*-1,2,4-triazole-3-thiol to tetramethylthiuram disulfide (TETD) heating at a molar ratio of 1:1.1 for eight hours at 100-105 0 C leads to 1,1-dimethyl-3-(3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4yl)thiourea with a yield of 83%. 3-Methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-amine under similar conditions gave a yield of 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea only 57%. A great difference in yields a may be explained by the steric difficulties arising from 3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea are treated with iodomethane expected the formation of S-methylisothiourea expected. Analisis of these reactions demonstrated that only 1,1-dimethyl-3-(3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-methyl-5-sulfanyl-4*H*-1,2,4-triazol-4-yl)thiourea and 1,1-dimethyl-3-[3-m

Antibacterial and antioxidantive properties of the parent compound were investigated TETD pas the important antibacterial activity MIC 0.0007 mg/mL, 3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-amine showed results of MIC 0.06 mg/mL and 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea has the respectively MIC 0.007 mg/mL. The antioxidant activity of 1,1-dimethyl-3-[3-methyl-5-(methylsulfanyl)-4*H*-1,2,4-triazol-4-yl]thiourea is IC₅₀ = 29 μ M like as Trolox with.

The research was supported within the institutional project 15.817.02.24F.