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Relation between Levinson center, chain recurrent set

and center of Birkhoff for compact dissipative

dynamical systems

David Cheban

Abstract. In this paper we prove the analogues of Birkhoff’s theorem for one-
sided dynamical systems (both with continuous and discrete times) with noncompact
space having a compact global attractor. The relation between Levinson center, chain
recurrent set and center of Birkhoff is established for compact dissipative dynamical
systems.

Mathematics subject classification: 37B25, 37B35 37B55, 37L15, 37L30, 37L45.

Keywords and phrases: Global attractors; Birkhoff’s center; chain recurrent set.

1 Introduction

Let X be a compact metric space, (X, R, π) be a flow on X, M ⊆ X
be a nonempty compact and invariant subset of X. Denote Ω(M) := {x ∈
M : there exist {xn} ⊂ M and {tn} ⊂ R such that xn → x, tn → +∞ as
n → ∞ and π(tn, xn) → x}. Recall that the point x ∈ X is called Poisson sta-
ble if x ∈ ωx

⋂

αx, where by ωx (respectively, αx) the ω (respectively, α)-limits set
of x is denoted. The following result is well known (see, for example, [1, 14]).

Theorem 1 (Birkhoff’s theorem). The following statements hold:

1. there exists a nonempty, compact and invariant subset B(π) ⊆ X with the
properties:

(i) Ω(B(π)) = B(π);

(ii) B(π) is the maximal compact invariant subset of J with the property (i).

2. B(π) = P(π), i. e., the set of all Poisson stable points P(π) of the dynamical
system (X, R, π) is dense in B(π).

Remark 1. 1. The set B(π) is called the Bikkhoff center of dynamical system
(X, R, π).

2. Note that Birkhoff theorem remains true also for the discrete dynamical
systems (X, Z, π). This fact was established in the work of V. S.Bondarchuk and
V.A. Dobrynsky [1].
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3. The second statement of Theorem 1 remains true if we replace the center
of Birkhoff B(π) by arbitrary compact invariant set M ⊆ J with the property
Ω(M) = M . Namely the following equality takes place: M = P(π)

⋂

M .

The main result of this paper is the proof of the analogues of Birkhoff theorem
for the one-sided dynamical systems (both with continuous and discrete times) with
noncompact phase space having a compact global attractor.

2 Birkhoff center

Definition 1. A dynamical system (X, T, π) is said to be:

1. pointwise dissipative if there exists a nonempty compact subset K ⊆ X such
that

lim
t→+∞

ρ(π(t, x),K) = 0 (1)

for all x ∈ X;

2. compactly dissipative if there exists a nonempty compact subset K ⊆ X such
that (1) holds uniformly with respect to x on every compact subset from X.

Remark 2. Every compact dissipative dynamical system is pointwise dissipative.
The converse, generally speaking, is not true (see, for example, [4, Ch.I]).

Theorem 2 (see [4, Ch.I]). Suppose that (X, T, π) is a compact dissipative dynamical
system, then there exists a nonempty, compact, invariant subset J ⊆ X possessing
the following properties:

1. J attracts every compact subset A from X, i. e.,

lim
t→+∞

ρ(π(t, x), J) = 0

uniformly with respect to x ∈ A;

2. J is orbitally stable, i.e., for all ε > 0 there exists a δ = δ(ε) > 0 such that
ρ(x, J) < δ implies ρ(π(t, x), J) < ε for all t ≥ 0;

3. J is the maximal compact invariant subset of X.

Let M be a positively invariant and closed subset of X. Denote by J+
x (M) :=

{p ∈ X : there exist {xn} ⊆ M and tn → +∞ such that xn → x and π(tn, xn) → p
as n → +∞ }.

Lemma 1. Let M be a positively invariant and closed subset of X. If pn → p,
xn → x as n → ∞ and pn ∈ J+

xn
(M), then p ∈ J+

x (M).
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Proof. Let ε be an arbitrary positive number, pn → p and xn → x as n → ∞. Then
there exists a number n0 = n0(ε) ∈ N such that

ρ(pn, p) < ε/3 and ρ(xn, x) < ε/3

for all n ≥ n0. Since pn ∈ J+
xn

(M) for all n ∈ N, then there exist {xm
n } ⊆ M and

{tmn } (for all m ∈ N) such that xm
n → xn, tmn → +∞ and π(tmn , xm

n ) → pn as m → ∞.
In particular, for given ε there exists n < mn = mn(ε) ∈ N such that

ρ(xm
n , xn) < ε/3 and ρ(π(tmn , xm

n ), pn) < ε/3

for all m ≥ mn. Denote by x̄n := xmn

n and t̄n := tmn

n > n. Note that {x̄n} ⊆ M ,
t̄n → +∞ as n → ∞ and

ρ(x̄n, x) = ρ(xmn

n , x) ≤ ρ(xmn

n , xn) + ρ(xn, x) < ε/3 + ε/3 < ε

for all n ≥ n0(ε), i.e., x̄n → x as n → ∞. In addition we have

ρ(π(t̄n, x̄n), p) = ρ(π(tmn

n , xmn

n ), p) ≤ ρ(π(tmn

n , xmn

n ), pn) + ρ(pn, p) < ε/3 + ε/3 < ε

for all n ≥ n0. Thus for the point p we find the sequence {x̄n} ⊆ M and x̄n → +∞
as n → ∞ such that x̄n → x and π(t̄n, x̄n) → p as n → ∞, i. e., p ∈ J+

x (M). Lemma
is proved.

Lemma 2. Let M be a positively invariant and closed subset of X and x ∈ X. The
following statements hold:

1. J+
x (M) ⊆ M for all x ∈ M ;

2. the set J+
x (M) is closed and positively invariant;

3. if M is compact, then J+
x (M) is invariant.

Proof. Let p ∈ J+
x (M) and t ∈ T, then there are {xn} and tn → +∞ such that

xn → x and π(tn, xn) → p as n → ∞. Then we have π(t, p) = lim
n→∞

π(t, π(tn, xn)) =

lim
n→∞

π(t + tn, xn) and, consequently, π(t, p) ∈ J+
x (M) because xn ∈ M and M is

closed and positively invariant. Finally, it is evident that J+
x (M) ⊆ M for all x ∈ M .

Now we will establish the second statement of Lemma. Let {pn} be a sequence
from J+

x (M) such that pn → p as n → ∞, then pn ∈ J+
xn

(M) where xn := x for all
n ∈ N. By Lemma 1 p ∈ J+

x (M) because pn → p and xn → x as n → ∞. Let us show
now that the set J+

x (M) is positively invariant. Indeed, let t ∈ T and p ∈ J+
x (M),

then there are {xn} ⊆ M and tn → +∞ as n → ∞ such that π(tn, xn) → p as
n → ∞. Note that π(t, p) = lim

n→∞
π(t + tn, xn) and, consequently, π(t, p) ∈ J+

x (M).

Suppose that the set M is compact and p ∈ J+
x (M), then there are {xn} ⊆ M and

tn → +∞ as n → ∞ such that π(tn, xn) → p as n → ∞. Let t ∈ T be an arbitrary
number, then for sufficiently large n ∈ N we have tn − t ∈ T because tn → +∞ as
n → ∞. Since the set M is positively invariant and compact, then without loss of



RELATION BETWEEN LEVINSON CENTER, CHAIN RECURRENT SET . . . 45

generality we can suppose that the sequence {π(tn − t, xn)} is convergent. Denote
by pt its limit, then we obtain p = lim

n→∞
π(tn − t + t, xn) = lim

n→∞
π(t, π(tn − t, xn)) =

π(t, pt) and, consequently, p ∈ π(t, J+
x (M)), i. e., J+

x (M) ⊆ π(t, J+
x (M)) for all t ∈ T.

Thus J+
x (M) is positively and negatively invariant, i.e., it is invariant.

Definition 2. Let M be a subset of X. A point x ∈ X is said to be non-wandering
with respect to M if x ∈ J+

x (M).

Denote by Ω(M) := {x ∈ M : x ∈ J+
x (M)} the set of all non-wandering points

of M with respect to M .

Remark 3. Let A and B be two closed and positively invariant subsets of X, then
Ω(A) ⊆ Ω(B).

Definition 3. A point p ∈ X is said to be:

– Poisson stable in the positive direction if x ∈ ωx;

– Poisson stable in the negative direction if there exists an entire trajectory
γx ∈ Φx such that x ∈ αγx

, where αγx
:= {q ∈ X : there exists tn →

−∞ such that γx(tn) → q as n → ∞};

– Poisson stable if it is Poisson stable in the both directions.

Lemma 3. Let M be a nonempty, closed and positively invariant set, then the
following statements hold:

1. the set Ω(M) is closed;

2. if p ∈ M is Poisson stable in the positive direction, then p ∈ Ω(M);

3. if the point p ∈ M and γ ∈ Φp is an entire trajectory such that γ(S) ⊂ M and
p ∈ αγ, then p ∈ Ω(M).

Proof. The first statement directly follows from Lemma 1 and definition of Ω(M).
Let p ∈ M and p ∈ ωp, then there exists a sequence tn → +∞ such that

π(tn, p) → p as n → ∞. Let pn := p for all n ∈ N, then pn → p and π(tn, pn) → p
as n → ∞. This means that p ∈ J+

p (M), i.e., p ∈ Ω(M).
Let p ∈ M , γ ∈ Φp, γ(S) ⊂ M and p ∈ αγ . Then there exists a sequence

tn → +∞ such that γ(−tn) → p as n → ∞. Denote by pn := γ(−tn), then
pn → p and p = π(tn, pn) → p as n → ∞. Thus p ∈ J+

p (M) and, consequently,
p ∈ Ω(M).

Lemma 4. Suppose that M is a nonempty, compact positively invariant set and M
is a nonempty, compact minimal subset of M , then M ⊆ Ω(M).

Proof. Let p ∈ M and γ ∈ Φp be an entire trajectory of (X, T, π) passing through
p at the initial moment such that γ(S) ⊆ M . Since M is minimal, ωp and αγ are
nonempty, compact and invariant we have αγ = ωp = M. In particular there exists a
sequence τn → +∞ such that pn := γ(−τn) → p as n → ∞. Note that π(τn, pn) = p
for all n ∈ N and, consequently, p ∈ Ω(M) ⊆ Ω(M).
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Corollary 1. If M is a nonempty, compact positively invariant set, then Ω(M) 6= ∅.

Proof. Let M be a nonempty, compact and positively invariant set of (X, T, π). By
Birkhoff theorem there exists a nonempty minimal subset M ⊆ M and by Lemma 4
we have M ⊆ Ω(M).

Denote by Φx the set of all entire trajectories γx of (X, T, π) passing through the
point x at the initial moment t = 0.

Lemma 5. Suppose that M is a nonempty, compact and positively invariant set.
Then Ω(M) is a nonempty, compact and positively invariant subset of M .

Proof. By Corollary 1 the set Ω(M) is a nonempty subset. By Lemma 1 the set Ω(M)
is closed. Since Ω(M) ⊆ M and M is compact, then Ω(M) is so. Let now p ∈ Ω(M)
and t ∈ T, then there are pn → p (pn ∈ M) and tn → +∞ as n → ∞ such that
p = lim

n→∞
π(tn, pn). Note that π(t, p) = lim

n→∞
π(t, π(tn, pn)) = lim

n→∞
π(tn, π(t, pn))

and, consequently, π(t, p) ∈ J+
π(t,p)(M) because lim

n→∞
π(t, pn) = π(t, p) and

{π(t, pn)} ⊆ M . This means that π(t, p) ∈ Ω(M), i. e., Ω(M) is positively
invariant.

Lemma 6. Let M be a nonempty positively invariant subset of X, then the following
statements hold:

1. if (X, T, π) is pointwise dissipative, then Ω(M) is nonempty, closed and posi-
tively invariant;

2. if the dynamical system (X, T, π) is compactly dissipative and J is its Levin-
son center, then the set Ω(M) is nonempty, compact, positively invariant and
Ω(M) ⊆ J ;

3. if the dynamically system (X, T, π) is point dissipative (but not compactly dis-
sipative), then the set Ω(X), generally speaking, is not compact.

Proof. Since (X, T, π) is pointwise dissipative, then ΩM :=
⋃

{ωx : x ∈ M} ⊆ X
is a nonempty compact invariant subset of (X, T, π) and by Birkhoff’s theorem in
ΩM there exists at least one compact minimal subset M ⊆ Ω ⊆ X. By Corollary
1 Ω(M) 6= ∅. Let us show that Ω(M) is closed. If p = lim

n→∞
pn and pn ∈ Ω(M),

then pn ∈ J+
pn

(M). By Lemma 1 we have p ∈ J+
p (M), i.e., p ∈ Ω(M). If p ∈ Ω(M)

and t ∈ T, then there are pn ∈ M and tn → +∞ such that p = lim
n→∞

π(tn, pn)

and, consequently, π(t, p) = lim
n→∞

π(t, π(tn, pn)) = lim
n→∞

π(tn, π(t, pn)), i. e., π(t, p) ∈

J+
π(t,p)(M) because lim

n→∞
π(t, pn) = π(t, p). This means that π(t, p) ∈ Ω(M), i. e.,

Ω(M) is positively invariant.
Let (X, T, π) be compactly dissipative and x ∈ Ω(M), then there exist {xn} ⊆ M

and tn → +∞ such that xn → x and π(tn, xn) → x as n → ∞. Denote K0 := {xn},
where by bar the closure in X is denoted. Then we have

ρ(π(tn, xn), J) ≤ sup
p∈K0

ρ(π(tn, p), J), (2)
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where J is Levinson center of (X, T, π). Passing to limit in (2) we obtain x ∈ J . By
the first item the set Ω(X) is nonempty, compact and positively invariant.

To prove the third item it is sufficient to construct an example with the corre-
sponding properties. To this end we note that in the works [5] and [8] a dynamical
system (X, T, π) with the following properties was constructed:

1. (X, T, π) is point dissipative, but it is not compactly dissipative;

2. Ω(X) is an unbounded set and, consequently, it is not compact.

Lemma is proved.

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center and M ⊆ X be a nonempty, closed and positively invariant subset from X.
Denote by M1 := Ω(M) the set of all non-wandering (with respect to M) points of
(X, T, π). By Lemma 6 the set M1 is a nonempty, compact and positively invariant
subset of J . We denote by M2 := Ω(M1) ⊆ M1 the set of all non-wandering (with
respect to M1) points. By Corollary 1 and Lemma 5 the set M2 is nonempty, compact
and positively invariant. Analogously we define the set M3 := Ω(M2) ⊆ M2 which is
also a nonempty, compact and positively invariant set. We can continue this process
and we will obtain Mn := Ω(Mn−1) for all n ∈ N. Thus we have a sequence {Mn}n∈N

possessing the following properties:

1. for all n ∈ N the set Mn is nonempty, compact and positively invariant;

2. J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ Mn+1 ⊇ . . ..

Denote by Mλ :=
∞
⋂

n=1
Mn, then Mλ is a nonempty, compact (since the set J is

compact) and invariant subset of J . Now we define the set Mλ+1 := Ω(Mλ) and we
can continue this process to obtain the following sequence

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇

Mn+1 ⊇ . . . ⊇ Mλ ⊇ Mλ+1 ⊇ . . . ⊇ Mλ+k ⊇ . . . .

Now construct the set Mµ :=
∞
⋂

k=1

Mµ+k and we denote by Mµ+1 := Ω(Mµ) and so

on. Thus we will obtain a transfinite sequence of nonempty, compact and positively
invariant subsets

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ (3)

Mn+1 ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mµ ⊇ . . . .

Since J is a nonempty compact set, then in the sequence (3) there is at most a
countable family of different elements, i.e., there exists a γ such that Mν+1 = Mν .

Definition 4. The set B(M) := Mν is said to be the center of Birkhoff for the
closed and positively invariant set M . If M = X, then the set B(π) := B(X) is
said to be the Birkhoff center of compact dissipative dynamical system (X, T, π).
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Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center. Denote P (π) := {p ∈ X : p ∈ ωx}, then by Lemma 3 we have P (π) ⊆
B(π) ⊆ J .

Let K be a nonempty subset of X. Denote by C(T,K) the set of all continuous
mappings f : T 7→ K equipped with the compact-open topology.

Lemma 7. Let (X, T, π) be a compact dissipative dynamical system and B(π) be its
Birkhoff center. Then the following statements hold:

1. B(π) is a nonempty, compact and invariant set;

2. B(π) is a maximal compact invariant subset M of X such that Ω(M) = M .

Proof. By Lemma 6 B(π) is a nonempty, compact and positively invariant set.
To finish the proof of the first statement it is sufficient to establish that the set
B(π) is negatively invariant, i.e., B(π) ⊂ π(t,B(π)) for all t ∈ T. To this end it is
sufficient to show that for all x ∈ B(π) the set of all entire trajectories γx of (X, T, π)
passing through the point x at the initial moment with the condition γx(S) ⊆ B(π)
is nonempty. Let x ∈ B(π). Since Ω(B(π)) = B(π), then there are {xn} ⊆ B(π)
and {τn} ⊆ T such that xn → x, τn → +∞ and π(τn, xn) → x. Denote by γn

the function from C(S,B(π)) defined by the equality γn(t) = π(t + τn, xn) for all
t ≥ −τn and γn(t) = xn for all t ≤ −τn. We will show that the sequence {γn} is
relatively compact in C(S,B(π)). Let l > 0. Since the set B(π) is compact, then it
is sufficient to check that the sequence {γn} is equi-continuous on the interval [−l, l].
If we suppose that it is not true then there exist ε0 > 0, δn → and t1n, t2n ∈ [−l, l]
such that

|t1n − t2n| < δn and ρ(γn(t1n), γn(t2n)) ≥ ε0 (4)

for all n ∈ N. Without loss of generality we may consider that the sequence {γn(−l)}
is convergent and denote its limit by x̄. From inequality (4) we have

ε0 ≤ ρ(γn(t1n), γn(t1n)) = ρ(π(l + t1n, γn(−l)), π(l + t2n, γn(−l))). (5)

Passing to limit in inequality (5) as n → ∞ and taking into consideration (4), we
obtain ε0 ≤ ρ(π(l+ t̄, x̄), π(l+ t̄, x̄)) = 0, where t̄ := lim

n→∞
t1n = lim

n→∞
t2n. The obtained

contradiction proves our statement. Thus the sequence {γn} is equi-continuous
on [−l, l] and the set ∪∞

n=1γn([−l, l]) ⊆ B(π) is relatively compact. Taking into
account that l is an arbitrary positive number we conclude that the sequence {γn}
is relatively compact in C(S,B(π)). We may suppose that the sequence {γn} is
convergent. Denote by γ := lim

n→∞
γn, then γ(0) = x := lim

n→∞
π(τn, xn) and γ ∈ Φx

such that γ(S) ⊆ B(π) = Ω(B(π)), because by construction γn(S) ⊆ B(π) for all
n ∈ N.

Let now M ⊆ X be an arbitrary nonempty, compact and invariant subset of X
with the property Ω(M) = M . Then by construction of B(M) we have B(M) = M .
On the other hand M ⊆ J , where J is the Levinson center of the compact dissipative
dynamical system (X, T, π) and, consequently, B(M) ⊆ B(X) = B(π). Lemma is
completely proved.
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Definition 5. Recall that the mapping f : X 7→ X is said to be open if for all
p ∈ X and δ > 0 the set f(B(p, δ)) is open.

Let p ∈ B(π) and ε > 0. Denote by B̃(p, ε) := B(p, ε)
⋂

B(π).

Lemma 8. Let (X, T, π) be a compact dissipative dynamical system and B(π) be its
Birkhoff center. Then the following statements hold:

1. for all p ∈ B(π), ε > 0 and t0 ∈ T there exists a number t = t(p, ε, t0) > t0
such that π(t, B̃(p, ε))

⋂

B̃(p, ε) 6= ∅;

2. for all ε > 0, L > 0 and p ∈ B(π) there are q ∈ B̃(p, ε), δ = δ(L, ε) > 0 and
t > L such that

B̃(q, δ)
⋃

π(t, B̃(q, δ)) ⊂ B̃(p, ε).

Proof. Suppose that under the conditions of Lemma the first statement is not true.
Then there exist p0 ∈ B(π), ε0 > 0 and t0 ∈ T such that

π(t, B̃(p0, ε0))
⋂

B̃(p0, ε0) = ∅ (6)

for all t ≥ t0. On the other hand since p0 ∈ B(π), then there exist {pn} ⊆ B(π)
and tn → +∞ such that π(tn, pn) → p as n → ∞ and, consequently,

π(tn, B̃(p, ε0))
⋂

B̃(p, ε0) 6= ∅ (7)

for all n ∈ N. Conditions (6) and (7) are contradictory. The obtained contradiction
proves our statement.

Now we will establish the second statement. Let ε > 0, L > 0 and p ∈ B(π).
Since p ∈ J+

p (B(π)), then there are q ∈ B̃(p, ε) and t > L such that π(t, q) ∈ B̃(p, ε).

Let µ be a positive number such that B̃(π(t, q), µ) ⊂ B̃(p, ε). By continuity of the
map π(t, ·) : B(π) 7→ B(π) there exists a positive number δ = δ(t, q, ε) such that
B̃(q, δ) ⊂ B̃(p, ε) and π(t, B̃(q, δ)) ⊂ B̃(π(t, q), µ) ⊂ B̃(p, ε).

Lemma 9. Suppose that (X, T, π) is a dynamical system and the following condi-
tions hold:

1. the space X is compact;

2. X is an invariant set, i. e., π(t,X) = X for all t ∈ T;

3. Ω(X) = X.

Then for all x ∈ X, ε > 0 and l > 0 there exists a number t > l such that

π−tB(x, ε)
⋂

B(x, ε) 6= ∅.
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Proof. Let x ∈ X and l, ε be two arbitrary positive numbers. Since x ∈ J+
x , then

there are sequences {xn} ⊆ X and {tn} ⊆ T such that

xn → x, tn → +∞ and π(tn, xn) → x (8)

as n → ∞. For the sufficiently large n ∈ N we have

tn > l and xn, π(tn, xn) ∈ B(x, ε). (9)

Let γn ∈ Φπ(tn,xn) be a full trajectory of (X, T, π) passing through π(tn, xn) at
the initial moment t = 0 such that γn(s) = π(s + tn, xn) for all s ≥ −tn. Then
γn(−tn) = xn ∈ B(x, ε) and xn = γn(−tn) ∈ π−tn(xn) ⊆ π−tnB(x, ε). Thus we will
have

xn ∈ π−tnB(x, ε)
⋂

B(x, ε) 6= ∅ (10)

for all sufficiently large n ∈ N.

Corollary 2. Under the conditions of Lemma 9 for all x ∈ X, ε > 0 and l > 0
there exists t > l such that B(x, ε)

⋂

πtB(x, ε) 6= ∅.

Proof. By Lemma 9 for all x ∈ X, ε > 0 and l > 0 there exists t > l such that
π−tB(x, ε)

⋂

B(x, ε) 6= ∅ and, consequently,

πt(π−tB(x, ε)
⋂

B(x, ε)) ⊆ B(x, ε)
⋂

πtB(x, ε) 6= ∅.

Corollary 3. Suppose that the dynamical system (X, T, π) is compact dissipative
and B(π) is its Birkhoff’s center, then for all x ∈ B(π), ε > 0 and l > 0 there exists
a number t > l such that π−tB̃(x, ε)

⋂

B̃(x, ε) 6= ∅.

Proof. This statement directly follows from Lemmas 7 and 9.

Theorem 3. Suppose that (X, T, π) is a compact dissipative dynamical system, for
all t > 0 the mapping π̃(t, ·) := π(t, ·)∣

∣

B(π)
is open, then the set of all Poisson stable

in the positive direction points of (X, T, π) is dense in B(π), i. e., B(π) = P (π).

Proof. By Lemma 3 we have P (π) ⊆ B(π) and, consequently, P (π) ⊆ B(π). To
finish the proof of Theorem it is sufficiently to show that P (π) ⊇ B(π).

Let p ∈ B(π) and ε be an arbitrary (sufficient small) positive number. Let {tn}
be an increasing sequence such that τn → +∞. By Lemma 8 (item 2) there exists
t1 > τ1 such that

B̃[x1, ε1] ⊆ B̃[p, ε] and π(t1, B̃[x1, ε1]) ⊆ B̃[p, ε].

Since the mapping π(t1, ·) is open, then we can choose x1 ∈ B(π) and ε1 > 0 such
that

B̃[x1, ε1] ⊂ π(t1, B̃[p, ε]) ⊆ B̃[p, ε].
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By Lemma 8 there is t2 > τ2 such that we will have

B̃[x2, ε2] ⊆ B̃[x1, ε1] and π(t2, B̃[x2, ε2]) ⊆ B̃[x1, ε1].

Since the mapping π(t2, ·) is open we can again choose x2 ∈ B(π) and 0 < ε2 < ε1/2
such that

B̃[x3, ε3] ⊆ B̃[x2, ε2] and π(t3, B̃[x3, ε3]) ⊆ B̃[x2, ε2].

Reasoning analogously we can construct sequences {xn} ⊆ B(π) and {εn} such that
εn < εn−1/2, B̃[xn, εn] ⊂ B̃[xn−1, εn−1] and π(tn, B̃[xn, εn]) ⊆ B̃[xn−1, εn−1] for all
n ∈ N, where ε0 := ε and x0 := p. Since B(π) is a nonempty compact set, then

Λ :=
∞
⋂

n=0
B̃(xn, εn) 6= ∅ and it consists of a unique point. Let {x} = Λ. We will show

that the point x is Poisson stable in the positive direction. In fact, if L > 0 is a
sufficiently large number and δ > 0, respectively, sufficiently small number, then we
choose a natural number m ∈ N with the condition that tm > L and εm < δ, then
π(tn, B̃[xn, εn]) ⊆ B̃[xm, εm] ⊆ B̃[x, δ] for all n > m. In particular π(tn, x) ∈ B̃[x, δ]
for all n > m, i. e., x ∈ ωx. Thus x ∈ B̃(p, ε) and, consequently, B(π) ⊆ P (π).
Theorem is proved.

Remark 4. 1. Note that the mappings π̃(t, ·) (t ∈ T) are open, if on B(π) the
dynamical system (X, T, π) is invertible, i. e., for all t ∈ T the mapping π̃(t, ·) :
B(π) 7→ B(π) is a homeomorphism.

2. If the dynamical system (X, T, π) is invertible on B(π), then by Theorem 1.14
[14, Ch.III] (see also Proposal 1.1 from [1], where the analogue of Theorem 1.4 for
the discrete dynamical systems was proved) in the set B(π) the set of all Poisson
stable (both in the positive and negative directions) points from X is dense.

Let (X, T, π) be a compact dissipative dynamical system. Recall that a compact
set M ⊆ X is called a weak attractor of the dynamical system (X, T, π) if ωx∩M 6= ∅
for all x ∈ X. In this section we establish the relationship between weak attractors
of the dynamical system (X, T, π) and its Levinson center.

Theorem 4 (see [4, Ch.I]). Let (X, T, π) be compactly dissipative, J be its Levinson
center and M be a compact weak attractor of the dynamical system (X, T, π). Then
J = J+(M).

Denote by J+
x := {p ∈ X : there exist the sequences xn → x and tn → +∞ such

that π(tn, xn) → p as n → ∞} and J+(M) :=
⋃

{J+
x : x ∈ M}.

Lemma 10. Let M ⊆ X be a nonempty, compact, positively invariant and minimal
subset of X. Then the following statements hold:

1. the set M is invariant, i.e., π(t,M) = M for all t ∈ T;

2. for every x ∈ M each full trajectory γ ∈ Φx is Poisson stable, i. e.,
x ∈ ωx = αγ.
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Proof. Let t0 ∈ T and M ′ := π(t0,M), then M ′ ⊆ M and π(t,M ′) = π(t + t0,M) ⊆
M . Since M is a nonempty, compact and positively invariant set, then the set
M ′ is so. Taking into consideration that M is a minimal set we conclude that
M = π(t0,M) for all t0 ∈ T and, consequently, it is invariant.

Let now x ∈ M be an arbitrary point from M , then ωx is a nonempty, compact
and positively invariant subset of M . Since the set M is minimal, then we have
ωx = M . Let now γ ∈ Φx be an arbitrary full trajectory of (X, T, π) with the
properties: γ(0) = x and γ(S) ⊆ M , then its α-limit set αγ ⊆ M is a nonempty and
compact subset of ωx = M . If p ∈ αγ , then there exists a sequence sn → −∞ such
that p = lim

n→∞
γ(sn). For all t ∈ T the sequence {γ(t+sn)} ⊆ M is relatively compact

and, consequently, without loss of generality, we may suppose that {γ(t + sn)}
converges. Denote by pt its limit, i.e., pt := lim

n→∞
γ(t + sn). Note that

π(t, p) = lim
n→∞

π(t, γ(sn)) = lim
n→∞

γ(t + sn) ∈ αγ ⊆ M

for all t ∈ T and, consequently, ωp is a nonempty, compact, positively invariant
subset of M . On the other hand we have ωp ⊆ αγ ⊆ M . Since the set M is minimal,
then we obtain M = ωp ⊆ αγ ⊆ M and, consequently, αγ = M . Thus we have
x ∈ ωx = αγ = M . Lemma is completely proved.

Theorem 5. Let (X, T, π) be a compact dissipative dynamical system, J be its Levin-
son center and B(π) be the Birkhoff center of (X, T, π). Then the following equality
takes place: J = J+(B(π)).

Proof. By Lemmas 3 and 6 we have P(π) ⊆ B(π) ⊆ J and P(π) is a nonempty and
compact subset of J . It is not difficult to show that the set P(π) is a weak attractor
for (X, T, π). In fact, let x ∈ X be an arbitrary point of X. Since the dynamical
system (X, T, π) is compact dissipative, then the ω-limit set ωx of the point x is a
nonempty, compact and positively invariant subset of X. By theorem of Birkhoff
in ωx there exists a nonempty, compact, positively invariant and minimal subset
M ⊆ ωx. By Lemma 10 every point p from M is Poisson stable and, consequently,
M ⊆ P(π) ⊆ P(π) ⊆ B(π). Thus we have M ⊆ ωx

⋂

B(π) for each x ∈ X, i. e.,
B(π) is a weak attractor of (X, T, π). Now to finish the proof of Theorem it is
sufficient to apply Theorem 4.

3 Chain recurrent motions

Let Σ ⊆ X be a compact positively invariant set, ε > 0 and t > 0.

Definition 6. The collection {x = x0, x1, x2, . . . , xk = y; t0, t1, . . . , tk} of the
points xi ∈ Σ and the numbers ti ∈ T such that ti ≥ t and ρ(xiti, xi+1) < ε (i =
0, 1, . . . , k− 1) is called (see, for example, [2,3,6,7,12] and the bibliography therein)
a (ε, t, π)-chain joining the points x and y.

Remark 5. Without loss of generality we can suppose always that ti ≤ 2t, where ti
and t the numbers figuring in Definition 6 (see, for example, [2, Ch.I]).
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We denote by P (Σ) the set {(x, y) : x, y ∈ Σ,∀ ε > 0 ∀ t > 0 ∃ (ε, t, π)-chain
joining x and y}. The relation P (Σ) is closed, invariant and transitive [2, 6, 10–12].

Definition 7. The point x ∈ Σ is called chain recurrent (in Σ) if (x, x) ∈ P (Σ).

We denote by R(Σ) the set of all chain recurrent (in Σ) points from Σ.

Remark 6. Note that if Σ1 and Σ2 are two positively invariant subsets of (X, T, π)
with condition Σ1 ⊆ Σ2, then R(Σ1) ⊆ R(Σ2).

Definition 8. Let A ⊆ X be a nonempty positively invariant set. The set A is
called (see, for example, [9]) internally chain recurrent if R(A) = A, and internally
chain transitive if the following stronger condition holds: for any a, b ∈ A and any
ε > 0 and t > 0, there is an (ε, t, π)-chain in A connecting a and b.

The set of all chain recurrent points for (X, T, π) is denoted by R(Σ), i. e.,
R(Σ) := {x ∈ Σ : (x, x) ∈ P (Σ)}. On R(Σ) we will introduce a relation ∼ as
follows: x ∼ y if and only if (x, y) ∈ P (Σ) and (y, x) ∈ P (Σ). It is easy to check
that the introduced relation ∼ on R(Σ) is a relation of equivalence and, consequently,
it is easy to decompose it into the classes of equivalence {Rλ : λ ∈ L} (internally
chain transitive subsets), i. e., R(Σ) = ⊔{Rλ : λ ∈ L}. By Proposal 2.6 from [2]
(see also [6] and [10–12] for the semi-group dynamical systems) the defined above
components of the decomposition of the set R(Σ) are closed and positively invariant.

Lemma 11 (see [9]). Let x ∈ X and γ ∈ Φx. The ω-limit (respectively, α-limit)
set of positive (respectively, negative) pre-compact orbit of the point x is internally
chain transitive, i. e., R(ωx) = ωx (respectively, R(αγ) = αγ).

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center. Denote by R(π) := R(J).

Problem. Suppose that (X, T, π) is a compact dissipative dynamical system and J
is its Levinson center. To prove that R(π) = R(X) or to construct a corresponding
counterexample.

Remark 7. In the connection with the Problem formulated above it is interesting to
note that in the works [5,8] an example of dynamical system (X, T, π) is constructed
which posses the following properties:

1. (X, T, π) is point dissipative;

2. (X, T, π) is asymptotically compact;

3. (X, T, π) is not compact dissipative;

4. R(X) is an unbounded subset of X.

Denote by C(T × X,X) the set of all continuous functions π : T × X 7→ X
equipped with the compact-open topology. If K ⊂ X is a compact subset from X,
then we denote by

dK(f, g) := sup
L>0

min{ sup
0≤t≤L, x∈K

ρ(f(t, x), g(t, x)), L−1} (11)
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and D := {dK : K ∈ C(X)} a family of pseudo-metrics which generates the
compact-open topology on C(T × X,X), where C(X) is the family of all compact
subsets from X.

Remark 8. Note that for all ε > 0 the inequality dK(f, g) < ε is equivalent to
sup

0≤t≤ε−1, x∈K

ρ(f(t, x), g(t, x)) < ε (see, for example,[13, Ch.I] or [14, Ch.IV]).

Definition 9. Recall [2, Ch.I] that the collection [x1, x2, . . . , xk := y; t1, t2, . . . , tk−1]
is called a generalized chain joining x and y if the following conditions are fulfilled:

1. ti ≥ t;

2. ρ(x, x1) < ε;

3. ρ(π(ti, xi), xi+1) < ε (1 = 1, . . . , k − 1).

Remark 9. In the book [2, Ch.I] it is shown that in the definition of chain recurrence
the (ε, t, f)-chains can be replaced by generalized (ε, t, f)-chains.

Theorem 6. Suppose that the following conditions hold:

1. M ⊂ C(T × X,X) is a compact subset from C(T × X,X);

2. for all π ∈ M the dynamical system (X, T, π) is compact dissipative and Jπ is
its Levinson center;

3. the set J :=
⋃

{Jπ : π ∈ M} is compact.

Then the mapping F : M 7→ 2J defined by equality F (π) := R(π) is upper semi-
continuous, where by 2J the space of all compact subsets from J equipped with the
Hausdorff metric is denoted.

Proof. Let πn, π ∈ M and dJ(πn, π) → 0, an ∈ R(πn) and an → a as n → ∞. We
need to show that a ∈ R(π). Let ε be an arbitrary positive number and 0 < δ < ε/4.
There exists a number n0 ∈ N such that ρ(an, a) < δ and dJ(πn, π) < δ for all n ≥ n0.
Since an ∈ R(πn), then there is a (δ, ε−1, πn)-chain from an to an, i.e., there exists
a collection {x0 = an, x1, . . . , xk−1, xk = an; t0, . . . , tk−1} such that

ρ(πn(ti, xi), xi+1) < δ, ε−1 ≤ ti ≤ 2ε−1 (i = 0, 1, . . . , k − 1).

Thus the collection [x0, x1, . . . , xk−1, a; t0, t1, . . . , tk−1] is a generalized (2δ, ε−1, πn)-
chain joining a with a. From the inequality dJ (πn, π) < δ it follows that

ρ(πn(t, x), π(t, x)) < δ (x ∈ J, 0 ≤ t ≤ δ−1 < 4ε−1)

and, consequently, the above indicated generalized (2δ, ε−1, πn)-chain is also a gen-
eralized (ε, ε−1, π) chain from a to a. Since ε is an arbitrary positive number, then
a ∈ R(π).
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Lemma 12. Suppose that (X, T, π) is compact dissipative and J if its Levinson
center, then ωx ⊆ R(J) = R(π) for all x ∈ X.

Proof. Let x ∈ X be an arbitrary point. Since (X, T, π) is compact dissipative, then
ωx is a nonempty, compact, and invariant subset of J , then R(ωx) ⊆ R(J) = R(π).
By Lemma 11 we have ωx = R(ωx) and, consequently, ωx ⊆ R(π).

Lemma 13 (see [4, Ch.IV]). If the compact invariant set Σ from X contains only a
finite number of minimal sets, then the relation ∼ decomposes the set R(Σ) into the
finite number of different classes of equivalence (internally chain transitive sets).

Remark 10. 1. Lemma 13 was established in [4, Ch.IV] for the two-sided (group)
dynamical systems.

2. For the one-sided (semi-group) dynamical systems this statement may be
proved by slight modifications of the arguments from [4, Ch.IV].

3. For two-sided dynamical systems (T = S) with infinite number of compact
minimal subsets Lemma 13 remains true if in addition the dynamical system (X, S, π)
satisfies some condition of hyperbolicity (see Theorem 4.1 [4, Ch.IV]).

Lemma 14 (see [9]). Let M be an isolated (local maximal) invariant set and R be
a compact internally chain transitive set for (X, T, π). Assume that M

⋂

R 6= ∅ and
M ⊆ R.

Then

a. there exists a point u ∈ R \ M such that ωu ⊆ M ;

b. there exists a point w ∈ R \ M and an entire trajectory γ ∈ Φw such that
αγ ⊆ M .

Theorem 7. Assume that the following conditions hold:

1. the dynamical system (X, T, π) is compactly dissipative and J is its Levinson
center;

2. there exists a finite number n of compact minimal subsets Mi ⊆ J (i =
1, 2, . . . , k) of (X, T, π);

3. the collection of subsets {M1,M2, . . . , n} does not admit k-cycles;

4. for all x ∈ X there exists a number i ∈ {1, 2, . . . , n} such that ωx = Mi.

Then any compact internally chain transitive set Rλ(π) is a minimal set of
(X, T, π), i. e., there exists i ∈ {1, 2, . . . , n} such that Rλ = Mi.

Proof. Let Rλ(π) be a compact internally chain transitive set for (X, T, π). Since
Rλ(π) is a compact positively invariant set, then by Birkhoff’s theorem in Rλ(π)
there exists a nonempty compact minimal set Mi ⊆ Rλ(π) (i1 ∈ {1, 2, . . . , n}). We
will show that Rλ(π) = Mi1 . If we suppose that it is not true, then by Lemma 14
there exists a point x1 ∈ Rλ(π) \ Mi1 and an entire trajectory γ1 ∈ Φx1 such that
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αγ1 ⊆ Mi1 . By conditions of Theorem there exists a number i2 ∈ {1, 2, . . . , n}
such that ωx1 = Mi2 . Since Mi2 ⊆ Rλ(π) and Rλ(π) 6= Mi2 then by Lemma 14
there exists a point x2 ∈ Rλ(π) \ Mi2 and an entire trajectory γ2 ∈ Φx2 such that
αγ2 = Mi2 and there exists a number i3 ∈ {1, 2, . . . , n} such that ωx2 = Mi3 . Since
there is only a finite number of Mi’s, we will eventually arrive at a cyclic chain of
some minimal sets of (X, T, π), which contradicts our assumption.

Corollary 4. Under the conditions of Theorem 7 we have R(π) =
∐n

i=1 Mi.

Theorem 8. Suppose that (X, T, π) is a bounded dissipative dynamical system and
J is its Levinson center. Then for every δ > 0 and B ∈ B(X) there exists L =
L(δ,B) > 0 (L ∈ T) such that

π([0, L], x)
⋂

B(R(J), δ) 6= ∅ for all x ∈ B,

i. e., for all x ∈ B there exists l = l(x) ∈ [0, L] such that

π(l, x) ∈ B(R(J), δ).

Proof. If we suppose that the statement of Theorem is not true, then there are
δ0 > 0, B0 ∈ B(X), Ln ≥ n and xn ∈ B0 such that

ρ(π(t, xn),R(J)) ≥ δ0 (12)

for all t ∈ [0, Ln]. Let sn := [Ln/2] and x̃n := π(sn, xn). Note that

ρ(x̃n, J) = ρ(π(sn, xn), J) ≤ β(π(sn, B0), J) → 0 (13)

as n → ∞, because sn → ∞ and J attracts the bounded subset B0 as t → +∞.
From (13) it follows that the sequence {x̃n} is relatively compact. Thus, without
loss of generality we can suppose that the sequence {x̃n} is convergent. Denote
x̃ = lim

n→∞
x̃n, then by (13) we obtain x̃ ∈ J . On the other hand by (12) we obtain

ρ(π(t, x̃n),R(J)) = ρ(π(t + sn, xn),R(J)) ≥ δ0 (14)

for all t ∈ [−sn, sn]. Let γ ∈ Fx̃ be the full trajectory of dynamical system (X, T, π)
passing through {x} at the initial moment t = 0 and defined by equality γ(t) =
lim

n→∞
π(t + sn, xn) for all t ∈ S. Note that γ(S) ⊆ J because for every t ∈ S we have

ρ(π(t + sn, xn), J) ≤ ρ(π(t + sn, B0), J) (15)

for sufficiently large n, and passing to limit in (15) as n → ∞ we obtain γ(t) ∈ J for
all t ∈ S. By Lemma 12 we have ωx̃ ⊆ R(J). But from (14) it follows that γ(t) /∈
R(J) for all t ∈ S and, consequently, ωx̃

⋂

R(J) = ∅. The obtained contradiction
proves our statement. Theorem is proved.

Corollary 5. Suppose that the following conditions hold:
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1. (X, T, π) is a bounded dissipative dynamical system and J its Levinson center;

2. (X, T, π) is a gradient system;

3. Fix(π) = {p1, p2, . . . , pm};

4. Fix(π) does not contain any k-cycle (k ≥ 1).

Then for every δ > 0 and B ∈ B(X) there exists L = L(δ,B) > 0 (L ∈ T) such
that

π([0, L], B)
⋂

B(Fix(π), δ) 6= ∅,

i. e., for all x ∈ B there exists l = l(x) ∈ [0, L] such that

π(l, x) ∈ B(Fix(π), δ).

Proof. This statement follows from Theorems 7 and 8.

Theorem 9. Suppose that the following conditions are fulfilled:

1. the dynamical system (X, T, π) admits a compact global attractor J which at-
tracts every bounded subset B ∈ B(X);

2. R(J) consists of finite number of different classes of equivalence
R1 R2, . . . , Rk.

Then for every δ̃ > 0 there exists δ ∈ (0, δ̃) such that for every x ∈ B(Ri, δ)
(i = 1, k) with π(t, x) ∈ B(Ri, δ) for all t ∈ [0, T ) and π(T, x) /∈ B(Ri, δ) we have
π(t, x) /∈ B(Ri, δ) for each t ≥ T (i. e., never returns again in B(Ri, δ) for all
t ≥ T ).

Proof. By Lemma 4.3 [4, Ch.IV] in the collection {R1,R2, . . . ,Rk} there is no
r-cycles (r ≥ 1). We will show that if we suppose that the statement of Theo-
rem is not true, then we will have a contradiction this the fact formulated above.
In fact. Suppose that Theorem is wrong, then there are Ri0 , B(Ri0 , δ0) (δ0 > 0),
Tn ∈ T, T ′

n > Tn and a sequence {xn} ⊂ B(Ri0 , δ0) such that

π(Tn, xn) /∈ B(Ri0, δ0) and π(T ′
n, xn) ∈ B(Ri0 , 1/n).

Without loss of generality we can suppose that π(t, xn) ∈ B(Ri0 , δ0) for all
t ∈ [0, Tn).

Note that Tn → ∞ as n → ∞. If we suppose that it is not so, then we can
consider that {Tn} is bounded (otherwise we can extract a subsequence {Tkn

} which
converges to +∞ as n goes to ∞), i. e., there exists a number L > 0 such that

π(t, xn) /∈ B(Ri0 , δ0) (16)
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for all t ≥ L and n ∈ N. Since xn ∈ B(Ri0 , 1/n), then without loss of generality
we can suppose that {xn} is convergent. Denote by p := lim

n→∞
xn, then p ∈ Ri0 and

passing into limit in (16) as n → ∞ we obtain

π(t, p) /∈ B(Ri0 , δ0) (17)

for all t ≥ L. On the other hand

π(t, p) ∈ Ri0 (18)

for all t ≥ 0 because the set Ri0 is invariant. Relations (17) and (18) are contradic-
tory. The obtained contradiction proves our statement.

Denote by x̃n := π(Tn, xn), then we have

1. x̃n /∈ B(Ri0 , δ0) for all n ∈ N;

2. π(t, x̃n) = π(t + Tn, xn) ∈ B(Ri0 , δ0) for all −Tn ≤ t < 0;

3. π(T̃ ′
n, x̃n) ∈ B(Ri0 , 1/n) for all n ∈ N, where T̃ ′

n := T ′
n − Tn > 0.

Since xn ∈ B(Ri0 , 1/n), Tn → +∞ and (X, T, π) is compactly dissipative, then the
sequence {x̃n} is relatively compact and without loss of generality we can suppose
that it is convergent. Denote by x̃ := lim

n→∞
x̃n and consider γ ∈ Φx̃, where γ(t) :=

lim
n→∞

π(t + Tn, xn) for all t ∈ S.

Note that T̃ ′
n → +∞ as n → ∞. In fact, if we suppose that it is not true,

then without loss of generality we can consider that {T̃ ′
n} is bounded, for example,

T̃ ′
n ∈ [0, L] for all n ∈ N, where L is some positive number. Let l := lim

n→∞
T̃ ′

n, then

l ∈ [0, L] (if it is necessary we can extract a convergent subsequence from {T̃ ′
n}).

Then from (iii) we obtain π(l, x̃) ∈ Ri0 and, consequently, x̃ ∈ Ri0 because Ri0 is
invariant. The obtained contradiction proves our statement.

We will show that γ(t) ∈ J for all t ∈ S. In fact

ρ(π(t + Tn, xn), J) ≤ β(π(t + Tn,K), J) → 0

as n → ∞, where K := {xn} and by bar the closure in the space X is denoted.
Now we note that γ(t) ∈ B(Ri0 , δ0) for all t < 0. Since the set Ri0 is local maximal,
then without loss of generality we can suppose that in B(Ri0, δ0) the invariant set
Ri0 is maximal and, consequently, αγ ⊆ Ri0 . On the other hand ωx̃ ⊆ R(J) and,
consequently, there exists a number i1 ∈ {1, 2, . . . , k} such that ωx̃ ⊆ Ri1 . Since the
collection {R1,R2, . . . ,Rk} has not r-cycles (r ≥ 1), then i1 6= i0.

Since x̃n → x̃ as n → ∞ and ωx̃ ⊆ Ri1 , then by integral continuity for all
n ∈ N there exists a number T 1

n > 0 such that π(T 1
n , x̃n) ∈ B(Ri1 , 1/n). Taking into

account that T̃ ′
n → +∞ as n → ∞ and Theorem 8 we can consider that T 1

n ≤ T̃ ′
n.

On the other hand by Theorem 8 for all n ∈ N there exists T 2
n ∈ (T 1

n , T̃ ′
n) such

that π(T 2
n , x̃n) /∈ B(Ri1 , δ0). Repeating the reasoning above for the set Ri1 and the
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sequence {x̃n} we can find a full trajectory γ1 so that αγ1 ⊆ Ri1 and ωx̃1 ⊆ Ri2 ,
where i2 6= i0, i1 and x̃1 := γ1(0).

Reasoning analogously we will construct a sequence {γ, γ1, . . . , γp} (p ≤ k − 1)
so that αγp

⊆ Rip and ωx̃p
⊆ Rip+1 (γ0 := γ). Since the family {R1,R2, . . . ,Rk}

contains a finite number of sets Rp, then after the finite number q ≤ k of steps
we will have Rip = Ri0 , i. e., we will obtain a q-cycle. The obtained contradiction
proves our Theorem.

Corollary 6. Suppose that the following conditions hold:

1. (X, T, π) is a bounded dissipative dynamical system and J its Levinson center;

2. (X, T, π) is a gradient system;

3. Fix(π) = {p1, p2, . . . , pm};

4. Fix(π) does not contain any k-cycle (k ≥ 1).

Then for every δ̃ > 0 there exists δ ∈ (0, δ̃) such that for every x ∈ B(Ri, δ)
(i = 1, k) with π(t, x) ∈ B(Ri, δ) for all t ∈ [0, T ) and π(T, x) /∈ B(Ri, δ) we have
π(t, x) /∈ B(Ri, δ) for each t ≥ T (i. e., never returns again in B(Ri, δ) for all
t ≥ T ).

Proof. This statement follows from Theorems 8 and 9.
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