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Determining the Optimal Evolution Time

for Markov Processes with Final Sequence of States

Alexandru Lazari

Abstract. This paper describes a class of dynamical stochastic systems that re-
presents an extension of classical Markov decision processes. The Markov stochastic
systems with given final sequence of states and unitary transition time, over a finite or
infinite state space, are studied. Such dynamical system stops its evolution as soon as
given sequence of states in given order is reached. The evolution time of the stochastic
system with fixed final sequence of states depends on initial distribution of the states
and probability transition matrix. The considered class of processes represents a ge-
neralization of zero-order Markov processes, studied in [3]. We are seeking for the
optimal initial distribution and optimal probability transition matrix that provide the
minimal evolution time for the dynamical system. We show that this problem can be
solved using the signomial and geometric programming approaches.

Mathematics subject classification: 65C40, 60J22, 90C39, 90C40.
Keywords and phrases: Markov Process, Final Sequence of States, Evolution Time,
Geometric Programming, Signomial Programming, Posynomial Function.

1 Introduction and Problem Formulation

Let L be a stochastic discrete system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N the state of the system is v(t) ∈ V . The system
L starts its evolution from the state v with the probability p∗(v), for all v ∈ V ,
where

∑

v∈V

p∗(v) = 1. Also, the transition from one state u to another state v is

performed according to given probability p(u, v) for every u ∈ V and v ∈ V , where
∑

v∈V

p(u, v) = 1, ∀u ∈ V and p(u, v) ≥ 0, ∀u, v ∈ V . Additionally we assume that

a sequence of states x1, x2, . . . , xm ∈ V is given and the stochastic system stops
transitions as soon as the sequence of states x1, x2, . . . , xm is reached in given order.
The time T when the system stops is called evolution time of the stochastic system
L with given final sequence of states x1, x2, . . . , xm.

Various classes of such systems have been studied in [1] and [5], where polyno-
mial algorithms for determining the main probabilistic characteristics (expectation,
variance, mean square deviation, n-order moments) of evolution time of the given
stochastic systems were proposed. Another interpretations of these Markov pro-
cesses were analyzed in 1981 by Leo J.Guibas and Andrew M.Odlyzko in [9] and
by G. Zbaganu in 1992 in [8]. First article considers the evolution of these stochas-
tic systems as a string, composed from the states of the systems, and studies the
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periods in this string. In the second paper the author considers that the evolution
of Markov process is similar with a poem written by an ape. The evolution time of
the system is associated with the time that needs for the ape to write that poem
(the final sequence of states of the system).

Next, we consider that the distributions p and p∗ are not fixed. So, we have the
Markov process L(p∗, p) with final sequence of states X, distribution of the states p∗

and transition matrix p, for every parameters p and p∗. The problem is to determine
the optimal distribution p∗ = p∗ and optimal transition matrix p = p that minimize
the expectation of the evolution time T (p∗, p) of the stochastic system L(p∗, p).

Based on the results mentioned above, efficient methods for minimizing the ex-
pectation of the evolution time of zero-order Markov processes with final sequence of
states and unitary transition time were obtained in [3]. The main idea was that the
expectation of the evolution time can be written as a posynomial minus one unit.
The geometric programming approach was applied and the problem was reduced to
the case of convex optimization and solved using the interior-point methods.

In this paper we consider a generalization of this problem where the evolution
time is minimized for Markov processes of order 1.

2 Preliminary Results

In order to determine the minimal evolution time for Markov processes with
final sequence of states we will use the geometric and signomial programming
approaches [6].

2.1 Geometric Programming

The geometric programming was introduced in 1967 by Duffin, Peterson, and
Zener. Wilde and Beightler in 1967 and Zener in 1971 contributed with several
results referred to many extensions and sensitivity analysis. A geometric program
represents a type of optimization problem, described by objective and constraint
functions that have a special form. A good tutorial on geometric programming was
presented in [6].

First numerical methods, based on solving a sequence of linear programs, were
elaborated by Avriel et al., Duffin, Rajpogal and Bricker. Nesterov and Nemirovsky
in 1994 described the first interior-point method for geometric programs and proved
the polynomial time complexity. Recent numerical approaches were presented by
Andersen and Ye, Boyd and Vandenberghe, Kortanek.

In the context of geometric programming, a monomial represents a function
f : R

s → R of the form f(x1, x2, . . . , xs) = cxα1
1 xα2

2 . . . xαs

s , where c > 0 and αi ∈ R,

i = 1, s. An arbitrary sum of monomials, f(x1, x2, . . . , xs) =
K
∑

k=1

ckx
α1k

1 x
α2k

2 . . . xαsk
s ,

where ck > 0, k = 1,K and αik ∈ R, i = 1, s, k = 1,K, represents a posynomial.
Posynomials are closed under addition, multiplication, and nonnegative scaling. A
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geometric program is an optimization problem of the form

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m

xl > 0, l = 1, s
,

where fi(x1, x2, . . . , xs), i = 0, r, are posynomials and gj(x1, x2, . . . , xs), j = 1,m,
are monomials.

In order to efficiently solve a geometric program we need to convert it to a convex
optimization problem. The conversion is based on a logarithmic change of variables
yl = ln xl, l = 1, s and a logarithmic transformation of the objective and constraint
functions. The obtained convex optimization problem has the form

ln f0(e
y1 , ey2 , . . . , eys) → min,

{

ln fi(e
y1 , ey2 , . . . , eys) ≤ 0, i = 1, r

ln gj(e
y1 , ey2 , . . . , eys) = 0, j = 1,m

and can be efficiently solved using standard interior-point methods (see [6] and [7]).

2.2 Signomial Programming

In the context of signomial programming, a signomial monomial represents a
function f : R

s → R of the form f(x1, x2, . . . , xs) = cxα1
1 xα2

2 . . . xαs

s , where c ∈ R

and αi ∈ R, i = 1, s. An arbitrary sum of signomial monomials of the form

f(x1, x2, . . . , xs) =
K
∑

k=1

ckx
α1k

1 x
α2k

2 . . . xαsk
s , where ck ∈ R, k = 1,K and αik ∈ R,

i = 1, s, k = 1,K , represents a signomial. Signomials are closed under addition,
substraction, multiplication, and scaling. A signomial program is an optimization
problem of the form:

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m

xl > 0, l = 1, s
,

where fi(x1, x2, . . . , xs), i = 0, r and gj(x1, x2, . . . , xs), j = 1,m, are signomials.

So, a signomial has the same form as a posynomial, but the coefficients are
allowed to be also negative. There is a huge difference between a geometric program
and a signomial program. The global optimal solution of a geometric program can
always be determined, but only a local solution of a signomial program can be
calculated efficiently.
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2.3 Geometric Programs with Posynomial Equality Constraints

In several particular cases the signomial programs can be handled as geometric
programs. In [6] it was shown that the geometric programs with posynomial equa-
lity constraints represent such particular case, i.e. can be solved using geometric
programming method. A geometric program with posynomial equality constraints
is a signomial program of the form:

f0(x1, x2, . . . , xs) → min,















fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) = 1, k = 1, n

xl > 0, l = 1, s

,

where fi(x1, x2, . . . , xs), i = 0, r and hk(x1, x2, . . . , xs), k = 1, n, are posynomials
and gj(x1, x2, . . . , xs), j = 1,m, are monomials.

Suppose that for each posynomial equality constraint hk(x1, x2, . . . , xs), k = 1, n,
we can find a different variable xl(k) with the following properties:

• The variable xl(k) does not appear in any of the monomial equality constraint
functions;

• The posynomial hk(x1, x2, . . . , xs) is monotone strictly

– increasing in xl(k), case in which we denote λ(xl(k)) = −1 or

– decreasing in xl(k), case in which we denote λ(xl(k)) = 1;

• The functions fi(x1, x2, . . . , xs), i = 0, r, are all

– monotone decreasing in xl(k) if λ(xl(k)) = −1;

– monotone increasing in xl(k) if λ(xl(k)) = 1.

We first form the geometric program relaxation:

f0(x1, x2, . . . , xs) → min,















fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) ≤ 1, k = 1, n

xl > 0, l = 1, s

.

If f∗ is the optimal value of the relaxed problem, then any optimal solution of the
auxiliary problem

n
∏

k=1

(xl(k))
λ(xl(k)) → min,
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fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) ≤ 1, k = 1, n
f0(x1, x2, . . . , xs) ≤ f∗

xl > 0, l = 1, s

,

is an optimal solution of the original problem.

3 The Main Results

3.1 Stochastic Systems with Final Sequence of States

Independent States

In this subsection we briefly describe the main results referred to the problem
of optimization of the evolution time of stochastic systems with final sequence of
states and independent states. These systems are also called zero order Markov
processes with final sequence of states or strong memoryless stochastic systems with
final sequence of states and are analyzed and studied in [2] and [3]. This problem was
reduced to a geometric program using the main properties of homogeneous recurrent
linear sequences and generating function, presented in [3–5] and [1].

The zero order Markov processes with final sequence of states represent a par-
ticular case of stochastic systems with final sequence of states studied in this paper.
In this case the states of the system are independent, so, the rows of the transition
matrix p are equal to initial distribution p∗. The expectation of the evolution time
can be determined using the following theorem.

Theorem 1. The expectation of the evolution time T (p∗) of zero-order Markov

process L(p∗) is E(T (p∗)) = −1 + (m + w−1
m ) +

1

wm

m−1
∑

k=0

(k + 1)zmk, where m is the

length of final sequence of states X = (x1, x2, . . . , xm), πs = p∗(xs), ws =
s
∏

j=1
πj,

t(s) = min({t ∈ {2, 3, . . . , s + 1} | xt−1+j = xj, j = 1, s + 1 − t}), s = 1,m and for
each s = 1,m and k = 0, s − 1 the following relation holds:

zsk =























0 if 0 ≤ k ≤ t(s) − 3
−wt(s)−1 if k = t(s) − 2

wt(s)−1(1 − π1) if t(s − t(s) + 1) = 2 and k = t(s) − 1

wt(s)−1 if t(s − t(s) + 1) ≥ 3 and k = t(s) − 1

wt(s)−1zs−t(s)+1, k−t(s)+1 if t(s) ≤ k ≤ s − 1

.

The following theorem shows how the problem of optimization of the evolution
time can be reduced to the geometric program

E(T (p∗)) + 1 → min,

{ ∑

x∈Y

p∗(x) ≤ 1

p∗(x) > 0, ∀x ∈ Y ,
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where Y = {x1, x2, . . . , xm}. If π∗ = (π∗(x))x∈Y represents the optimal solution of
this geometric program, then p∗ = (p∗(x))x∈V represents the optimal solution of the
initial problem, where

{

p∗(x) = π∗(x), x ∈ Y

p∗(x) = 0, x ∈ V \Y .

Theorem 2. The expression E(T (p∗)) + 1 represents a posynomial in the variables
π1, π2, . . . , πm.

Also, several particular cases were analyzed and presented in [3] and the explicit
optimal solutions were obtained.

Theorem 3. If t(m) = 2, then the optimal solution is p∗ = (p∗(x))x∈V , where
p∗(x1) = 1 and p∗(y) = 0, for all y ∈ V \{x1}, and the minimal value of the
expectation of evolution time is E(T (p∗)) = m − 1.

Theorem 4. If t(m) = m + 1, then the components p∗(y), y ∈ V , of the optimal
solution p∗ are direct by proportional to the multiplicities m(y), y ∈ V , of the res-
pective states in final sequence of states X and the minimal value of the expectation

of evolution time is E(T (p∗)) = −1 +
∏

y∈Y

(

m

m(y)

)m(y)

.

3.2 Stochastic Systems with Final Sequence of States and

Interdependent States

In this subsection we study the problem of optimization of the evolution time of
stochastic systems with final sequence of states and interdependent states. The opti-
mal initial distribution and optimal transition matrix are obtained, using signomial
and geometric programming approaches.

Theorem 5 offers us the way for determining the optimal initial distribution of
the system.

Theorem 5. The optimal initial distribution of the states is p∗, where p∗(x1) = 1
and p∗(x) = 0, ∀x ∈ V \{x1}.

Proof. For finishing the evolution of the system it is necessary to pass consecutively
through the final states x1, x2, . . . , xm. So, the evolution time will be minimal when
the state x1 will be reached as soon as possible. For this reason, it is optimal to start
the evolution of the system from the state x1, i.e. p∗(x1) = 1. Since

∑

x∈V

p∗(x) = 1,

we have p∗(x) = 0, ∀x ∈ V \{x1}.

Theorem 6 describes several important properties of the optimal transit matrix.

Theorem 6. We consider the set of active final states X = {x1, x2, . . . , xm−1}, the
set of final transitions Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)} and the set of branch
states Z = {y ∈ X\{x1} | ∃x ∈ X,∃z ∈ X ∪ {xm}, z 6= y : (x, y) ∈ Y , (x, z) ∈ Y }.
The optimal transition matrix p has the following properties:
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1. p(x, x1) = 1 if (x, x1) ∈ Y and (x, z) 6∈ Y , ∀z 6= x1;

2. p(x, x1) = 1, ∀x 6∈ X;

3. p(x, x1) > 0, ∀x ∈ Z and p(x, x1) = 0 if (x, x1) 6∈ Y , x ∈ X\Z;

4. p(x, y) = 0 if (x, y) 6∈ Y and y 6= x1;

5. p(x, y) > 0, ∀(x, y) ∈ Y ;

6.
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X.

Proof. Let X = {x1, x2, . . . , xm−1} be the set of the states from which it is possible
to perform an optimal transition, Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)} – the set
of the optimal transitions (that follow optimal realization of the final sequence of
states), Z = {y ∈ X\{x1} | ∃x ∈ X,∃z ∈ X∪{xm}, z 6= y : (x, y) ∈ Y , (x, z) ∈ Y } –
the set of branch states, in which the stochastic system, having as goal the realization
of the final sequence of states, can make a mistake and need to have a chance to
return in the state x1.

1. If (x, x1) ∈ Y and (x, z) 6∈ Y , ∀z 6= x1, then x ∈ X and the transition (x, x1)
is the unique possible transition from the state x that belongs to the set Y .
For ensuring the realization of this transition when the system is in the state
x ∈ X , it is necessary to have p(x, x1) = 1.

2. For finishing the evolution of the system it is necessary to pass consecutively
through the final states x1, x2, . . . , xm. So, for minimizing the evolution
time of the system it is necessary that the state x1 to be reached as soon as
possible. So, if the system is in the state x 6∈ X , we need to have p(x, x1) = 1.

3. Since Z represents the set of branch states, in which the stochastic system,
having as goal the realization of the final sequence of states, can make a mis-
take, we need to give as soon as possible a chance to return in the state x1 for
retrying from the beginning the realization of the final sequence of states. So,
we can assume that p(x, x1) > 0, ∀x ∈ Z and p(x, x1) = 0 if (x, x1) 6∈ Y and
x ∈ X\Z;

4. If the state x ∈ X , then ∃y1, y2, . . . , yk ∈ X ∪ {xm} such that (x, yj) ∈ Y ,
j = 1, k, where k ≥ 1. For ensuring the realization of one of these transitions
when the system is in the state x ∈ X or return to the initial state x1 when
it is necessary, we need the nonexistence of another transition (x, y) 6∈ Y

with y 6= x1, i. e. need to have p(x, y) = 0. If x 6∈ X, from Property 2 of this
Theorem, since

∑

y∈V

p(x, y) = 1 and p(x, y) ≥ 0, ∀x, y ∈ V , we have p(x, y) = 0,

∀y 6= x1.
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5. We have p(x, y) > 0, ∀(x, y) ∈ Y , because, otherwise we have p(x, z) = 0 for
at least one transition (x, z) ∈ Y , i. e. this transition is not realizable, which
implies that the evolution time is infinite (non optimal), contradiction with
our minimization goal.

6. The relation
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X is obtained from the formula

∑

y∈V

p(x, y) = 1, ∀x ∈ X and the Property 4 from this Theorem.

Such we proved these six properties of the optimal transition matrix p.

Theorem 7 offers us the way for determining the optimal transition matrix of
the system.

Theorem 7. If δi,j(p) 6≡ 0, i, j = 1, 2, then the optimal transition matrix can be
determined by solving the following geometric programs with posynomial equality
constraints:

E(T (p)) = d1d
−1
2 → min, (1)



















































































(2a) :
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X

(2b) : d−1
1,1d1 + d−1

1,1d1,2 = 1

(2c) : d−1
2,1d2 + d−1

2,1d2,2 = 1

(2d) : d−1
1,1δ1,1(p) = 1

(2e) : d−1
1,2δ1,2(p) = 1

(2f) : d−1
2,1δ2,1(p) = 1

(2g) : d−1
2,2δ2,2(p) = 1

(2h) : di > 0, i = 1, 2
(2i) : di,j > 0, i, j = 1, 2

(2j) : p(x, y) > 0, ∀(x, y) ∈ Y

(2k) : p(x, x1) > 0, ∀x ∈ Z

(2)

and (1) subject to



















































































(3a) :
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X

(3b) : d−1
1,1d1 + d−1

1,1d1,2 = 1

(3c) : d−1
2,1d2 + d−1

2,1d2,2 = 1

(3d) : d−1
1,1δ1,2(p) = 1

(3e) : d−1
1,2δ1,1(p) = 1

(3f) : d−1
2,1δ2,2(p) = 1

(3g) : d−1
2,2δ2,1(p) = 1

(3h) : di > 0, i = 1, 2
(3i) : di,j > 0, i, j = 1, 2

(3j) : p(x, y) > 0, ∀(x, y) ∈ Y

(3k) : p(x, x1) > 0, ∀x ∈ Z

(3)
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according to the properties described by Theorems 5 and 6, where δi,j(p), i, j = 1, 2,
are the posynomials from the decomposition

E(T (p)) = (δ1,1(p) − δ1,2(p))(δ2,1(p) − δ2,2(p))−1 (4)

which follows from the algorithm developed in [1]. The signomial programs (1)− (2)
and (1)−(3) can be handled as geometric programs using the way followed in [6] and
described in Section 2.3. If p1 is the optimal solution of the problem (1)− (2) and p2

is the optimal solution of the problem (1) − (3), then the optimal transition matrix
is p ∈ {p1, p2} for which E(T (p)) is minimal. If there exists at least one posynomial
δi∗,j∗(p) ≡ 0, then in (2) and (3) the corresponding posynomial equality constraints
just disappear and the corresponding substitution di∗,j∗ = 0 is performed in (2) and
substitution di∗,3−j∗ = 0 is performed in (3).

Proof. From Theorem 5 and theoretical argumentation of the algorithm developed
and presented in [1], which determines the generating vector of the distribution of
the evolution time, we can observe that the components of generating vector q(p)
of the distribution a = rep(T (p)) of the evolution time T (p) represent signomials
in the variables p(x, y), x, y ∈ V . Since E(T (p)) = G[a]′(1), we obtain that E(T (p))
represents a fraction with signomial numerator and denominator. Because every
signomial can be written as a difference between two posynomials, we have the
relation (4), where δi,j(p), i, j = 1, 2, are posynomials.

If we denote di,1 = max{δi,1(p), δi,2(p)}, di,2 = min{δi,1(p), δi,2(p)}, i = 1, 2 and
di = di,1 − di,2 > 0, i = 1, 2, we obtain 0 < E(T (p)) = d1d

−1
2 , d−1

i,1 di + d−1
i,1 di,2 = 1,

i = 1, 2 and d−1
i,j δi,j(p) = 1 or d−1

i,j δi,3−j(p) = 1, i, j = 1, 2. The relations
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X and p(x, y) > 0, ∀(x, y) ∈ Y , follow from Theo-

rem 6.
Also, applying the same Theorem 6, we can eliminate the variables p(x, y) for

which p(x, y) = 0 or p(x, y) = 1 performing the corresponding substitutions. In
such way, we obtain the signomial programs (1) − (2) and (1) − (3). Because all
constraints (2a) − (2g) and (3a) − (3g) are posynomial equality constraints, these
signomial programs are geometric programs with posynomial equality constraints.

Next we will illustrate how these geometric programs with posynomial equality
constraints can be handled as geometric programs using the way described in Section
2.3. We will consider only the problem (1)− (2), the argumentation for the problem
(1) − (3) can be performed in similar way.

So, if the posynomials δi,j(p), i, j = 1, 2, are not monomials, we can fix the
variable d1,1 for constraint (2b), d2 for (2c), d1,2 for (2e), d2,1 for (2f), d2,2 for (2g),
an arbitrary variable p(x∗, y∗) that appears in the posynomial δ1,1(p) for constraint
(2d) and an arbitrary variable p(x, y∗(x)) 6= p(x∗, y∗) that appears in the posynomial
from (2a) for every x ∈ X for the constraints (2a). These selected variables verify
the properties described in Section 2.3, i.e. the problem (1)− (2) can be handled as
geometric programs.
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If the posynomial δ1,2(p), δ2,1(p) or δ2,2(p) is a monomial, then the respective
constraint (2e), (2f) or (2g) just disappears and the respective substitution di∗,j∗ =
δi∗,j∗(p) is performed in the signomial program (1) − (2). The selected variables for
the rest of constraints are not changed. So, the problem (1)− (2) can be handled as
geometric programs.

If the posynomial δ1,1(p) is a non-constant monomial, then the corresponding
constraint (2d) just disappears and the corresponding substitution d1,1 = δ1,1(p)
is performed in the signomial program (1) − (2). The selected variables for the
constraints (2a), (2c), (2e), (2f) and (2g) are not changed. Additionally, the variable
p(x∗, y∗) that appears in the posynomial δ1,1(p) is selected for constraint (2b). These
selected variables verify the properties described in Section 2.3, i.e. the problem
(1) − (2) can be handled as geometric programs.

If the posynomials δ1,1(p) and δ1,2(p) are two constants, then also d1 is a constant.
In this case the constraints (2b), (2d) and (2e) just are eliminated. The selected
variables for the rest of constraints are not changed. So, in this way, the problem
(1) − (2) can be handled as geometric programs.

If the posynomial δ1,1(p) is a constant and δ1,2(p) is not a constant, then the
constraint (2d) is eliminated and substitution d1,1 = δ1,1(p) is performed in the
signomial program (1) − (2). We can fix the variable d1,2 for constraint (2b), an ar-
bitrary variable p(x∗∗, y∗∗) that appears in the posynomial δ1,2(p) for constraint (2e)
and an arbitrary variable p(x, y∗∗(x)) 6= p(x∗∗, y∗∗) that appears in the posynomial
from (2a) for every x ∈ X for the constraints (2a). The selected variables for the
rest of constraints are not changed. These selected variables verify the properties
described in Section 2.3, i. e. the problem (1) − (2) can be handled as geometric
programs.

In this way, we analyzed all the possible cases. So, the problems (1) − (2) and
(1) − (3) can be handled as geometric programs.

4 Particular cases and generalizations

In the previous section a method for determining the optimal evolution time of
stochastic systems with final sequence of states, based on geometric and signomial
programming approaches, was theoretically grounded. Theorems 5 and 6 present
the main properties of the optimal distribution and optimal transition matrix. From
these theorems we can easy remark several particular cases and generalizations.

We consider the particular case x1 = x2 = . . . = xm. From Theorem 6 the
optimal transition matrix is obtained. The following formula holds:

p(x, y) =

{

1 if y = x1

0 if y 6= x1
, ∀x, y ∈ V.

So, the expectation of the evolution time is minimal (equal to m − 1) when the
stochastic system starts the evolution from the state x1 and remains with probability
1 at every moment of time in this state.
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Also, in the case xi 6= xj, ∀i, j, 1 ≤ i < j ≤ m, we have

p(x, y) =







1 if x 6∈ {x1, x2, . . . , xm−1} and y = x1

1 if ∃ i, 1 ≤ i < m, such that x = xi and y = xi+1

0 otherwise

, ∀x, y ∈ V.

The expectation of the evolution time is minimal (equal to m−1) when the stochastic
system starts the evolution from the state x1, passes with probability 1 in the state
x2, next, in similar way, passes in the state x3, . . ., until it reaches the state xm.

Another particular case is when ∀i, j, 1 ≤ i < j ≤ m, if xi = xj then j = m or
xi+1 = xj+1. This case is an extension of the previous particular case. We consider
the minimal values i∗ and j∗, i∗ < j∗, for which xi∗ = xj∗. We have xi∗+k = xj∗+k,
k = 0,m − j∗. So, {x1, x2, . . . , xm} = {x1, x2, . . . , xj∗−1}, which implies

p(x, y) =















1 if x 6∈ {x1, x2, . . . , xj∗−1} and y = x1

1 if ∃ i, 1 ≤ i < j∗ − 1, such that x = xi and y = xi+1

1 if x = xj∗−1 and y = xi∗

0 otherwise

, ∀x, y ∈ V.

The expectation of the evolution time is minimal (equal to m−1) when the stochas-
tic system starts the evolution from the state x1, passes with probability 1 in the
state x2, next, in similar way, passes in the state x3, . . ., until it reaches the state
xm ∈ {x1, x2, . . . , xj∗−1}.

Next we present a generalization of the problem studied in this paper for the
case in which the number of the states of the system is not finite, i.e. we have
ω = |V | = ∞. This case cannot be handled in the same way as finite case, because
it is not known any formula and any algorithm for determining the expectation of the
evolution time of stochastic system with final sequence of states and interdependent
states when the number of the states is not finite and the transition matrix and
initial distribution are fixed and given. Nevertheless, the optimal distribution and
optimal transition matrix can be determined using the result obtained above.

Indeed, we observed above that the given stochastic system, with finite or infinite
number of states, can be reduced to a new stochastic system with maximum m states,
x1, x2, . . . , xm, preserving the optimal solution. This reduction is possible thanks
to Theorems 5 and 6, from which, in optimal case, the excluded states cannot be
reached by system at any moment of time. So, if p is the optimal transition matrix for
the stochastic system with infinite number of states and pr is the optimal transition
matrix for the reduced stochastic system, then

p(x, y) =







pr(x, y) if x, y ∈ {x1, x2, . . . , xm}
1 if x 6∈ {x1, x2, . . . , xm} and y = x1

0 otherwise

, ∀x, y ∈ V.

5 Conclusions

In this paper the following results related to stochastic systems with final se-
quence of states and unitary transition time were established:
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• The given stochastic system, with finite or infinite number of states, can be
reduced to a new stochastic system with maximum m states, x1, x2, . . . , xm,
preserving the optimal solution;

• The evolution time of the stochastic system with fixed final sequence of states
depends on initial distribution of the states and probability transition matrix;

• In the case when the states of the system are independent, the expectation
of the evolution time represents a posynomial minus one unit, that offers the
possibility to minimize it using geometric programming approach;

• In the case when the states of the system are interdependent, the expectation
of the evolution time can be minimized by solving two geometric programs with
posynomial equality constraints, that represents signomial programs which can
be handled as geometric programs using the models developed in this paper;

• In several particular cases, which were described in Section 4, the optimal
initial distribution and optimal probability transition matrix are trivial.
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1992, No. 2(8), 66–74.

[9] Guibas Leo J., Odlyzko Andrew M. Periods in Strings. Journal of Combinatorial Theory,
Series A, 1981, 30, 19–42.

Alexandru Lazari

Moldova State University
60 Mateevici str., Chişinău
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