The Schauder basis in symmetrically normed ideals of operators

E. Spinu

Abstract. In this paper we build a basis in a separable symmetrically normed ideal.

Mathematics subject classification: 46B15, 47L30.

Keywords and phrases: Basis, symmetrically normed ideal, oprerator ideal.

It is well known that every Banach space with Shauder basis is separable. Converse proposition, as P.Enflo showed in 1973 [1] is not true. In the present work the problem of the existence of a Schauder basis in separable symmetrically normed ideals is considered. It is found that all such ideals have a basis. For particular case, symmetrically normed Lorentz ideals $\Upsilon_{p,q}$, a basis was built in [2]. The terminology of the article is based on [3].

Theorem. Let $\{\phi_j\}_{j=1}^{\infty}$ be an orthonormal basis in a Hilbert space H. A sequence of linear continuous operators $\{A_n\}_{n=1}^{\infty}$ of the form

$$A_{m^2+j} = \begin{cases} (\cdot, \phi_{m+1})\phi_j, & 1 \le j \le m+1\\ (\cdot, \phi_{2m+2-j})\phi_{m+1}, & m+1 < j \le 2m+1 \end{cases}, m = 0, 1, \dots$$

forms a basis in every symmetrically normed ideal.

Proof. Let Υ be a separable symmetrically normed ideal. Since the ideal Υ is separable there is a symmetrically normed function $\Phi(x)$ so that $\Upsilon = \Upsilon_{\Phi}^{(0)}$. For every operator $A \in \Upsilon_{\Phi}^{(0)}$ we can write the Schmidt representation: $A = \sum_{j=1}^{\infty} s_j(A)(\cdot, x_j)y_j$. For every $\epsilon > 0$ we can choose $n_0 \in \mathbb{N}$ such that $||A - A_{n_0}|| < \epsilon/2$, where $A_{n_0} = \sum_{j=1}^{n_0} s_j(A)(\cdot, x_j)y_j$. For every $0 < \delta < 1$ and $\forall j \in \mathbb{N}$ there are $u_j, v_j \in span\{\phi_j\}_{j=1}^{\infty}$ such as $||x_j - u_j|| < \delta, ||y_j - v_j|| < \delta$. We have $||(\cdot, x_j)y_j - (\cdot, u_j)v_j||_{\Phi} \le ||(\cdot, x_j - u_j)y_j||_{\Phi} + ||(\cdot, u_j)(v_j - y_j)||_{\Phi} \le 3\delta$. If we take $\delta = \frac{\epsilon}{2n_0s_1(A)}$ and $B_{n_0} = \sum_{j=1}^{n_0} s_j(A)(\cdot, u_j)v_j \in span\{A_n\}_{n=1}^{\infty}$ we get

If we take $\delta = \frac{\epsilon}{2n_o s_1(A)}$ and $B_{n_0} = \sum_{j=1}^{n_0} s_j(A)(\cdot, u_j)v_j \in span\{A_n\}_{n=1}^{\infty}$ we get that $||A_{n_0} - \underline{B_{n_0}}|| \leq \epsilon/2$. Thus $||A - B_{n_0}||_{\Phi} \leq ||A - A_{n_0}||_{\Phi} + ||A_{n_0} - B_{n_0}||_{\Phi} < \epsilon$. Hence, $A \in span\{A_n\}_{n=1}^{\infty}$, in other words, the sequence $\{A_n\}_{n=1}^{\infty}$ is complete in Υ . We show that the sequence $\{A_n\}_{n=1}^{\infty}$ is minimal. To prove that it is sufficient to show that this system has a biorthogonal one.

Define $F_{m^2+j} = sp(XA_{m^2+j}^*)$, where $X \in \Upsilon_{\Phi}^{(0)}$, $sp(A) = \sum_{j=1}^{\infty} (A\phi_j, \phi_j)$ and $\{\phi_j\}_{j=1}^{\infty}$ is a basis in H.

It is easy to note that F_{m^2+i} is a linear bounded operator on $\Upsilon_{\Phi}^{(0)}$ and

$$F_{m^2+j} = sp(XA_{m^2+j}^*) = \begin{cases} 1, & m = r, j = s \\ 0, & m^2 + j \neq r^2 + s \end{cases}.$$

[©] E. Spinu, 2004

It follows that $\{F_{m^2+j}\}$ and $\{A_{m^2+j}\}$ are a biorthogonal system.

We consider the sequence of projectors $\{\mathfrak{P}_n\}_{n=1}^{\infty}$ of the form

$$\mathfrak{P}_n(A) = \sum_{j=1}^n F_j(A) A_j \mathfrak{P}_{m^2}(A) = \sum_{k=1}^m \sum_{j=1}^m sp(A(\cdot, \phi_k)\phi_j)(\cdot, \phi_j)\phi_k =$$
$$= \sum_{k=1}^m \sum_{j=1}^m (A\phi_j, \phi_k)(\cdot, \phi_j)\phi_k = P_m A P_m,$$

where $P_m x = \sum_{j=1}^m (x, \phi) j \phi_j$, $x = \sum_{j=1}^\infty (x, \phi_j) \phi_j$ and $||P_m|| = 1$. We therefore have $||\mathfrak{P}_{m^2}(A)|| = ||P_m A P_m||_{\Phi} \le ||A||_{\Phi}$ Hence, $||\mathfrak{P}_{m^2}|| \le 1$. Let $1 \le j \le m+1$. Then we have

$$\mathfrak{P}_{m^{2}+j}(A) = P_{m}AP_{m} + \sum_{r=1}^{j} sp(A(\cdot,\phi_{r})\phi_{m+1})(\cdot,\phi_{m+1})\phi_{r} = P_{m}AP_{m} + \sum_{r=1}^{j} (A\phi_{m+1},\phi_{r})(\cdot,\phi_{m+1})\phi_{r} = P_{m}AP_{m} + P_{j}A(P_{m+1}-P_{m}).$$

So, $||\mathfrak{P}_{m^2+j}(A)|| \leq 3||A||_{\Phi}, \forall A \in \Upsilon_{\Phi}^{(0)}$. Let $m+2 \leq j \leq 2m+1$. Then we have

$$\mathfrak{P}_{m^2+j}(A) = P_{m+1}AP_{m+1} - \sum_{r=1}^{2m+1-j} sp(A(\cdot,\phi_r)\phi_{m+1})(\cdot,\phi_{m+1})\phi_r =$$
$$= P_{m+1}AP_{m+1} - P_{2m+1-j}A(P_{m+1} - P_m).$$

So, $||\mathfrak{P}_{m^2+j}(A)|| \le 3||A||_{\Phi}, \forall A \in \Upsilon_{\Phi}^{(0)}.$

Thus, $||\mathfrak{P}_n|| \leq 3$ (n = 1, 2...). By criterion of basis in the Banach space [4], we obtain that $\{A_n\}_{n=1}^{\infty}$ is a basis of the Banach space Υ .

References

- ENFLO P. A counterexample to the approximation property in Banach spaces. Acta Math., 1973, 130, p. 309–317.
- [2] FUGAROLAS M., COBOS F. On Schauder bases in the Lorentz operator ideal. J. Math. Anal. Appl., 1983, 95, p. 235–242.
- [3] GOHBERG I., KREIN M. Introduction to the theory of linear nonself-adjoint operators. Moscow, Nauka, 1965 (in Russian).
- [4] SINGER I. Bases in Banach spaces I. Berlin-Heidelberg-New York, Springer, 1970.

Moldova State University Department of Mathematics and Computer Science str. A. Mateevici, 60 Chişinău, MD-2009 Moldova E-mail: spino14@yandex.ru Received July 30, 2004