The Schauder basis in symmetrically normed ideals of operators

E. Spinu

Abstract. In this paper we build a basis in a separable symmetrically normed ideal.
Mathematics subject classification: 46B15, 47L30.
Keywords and phrases: Basis, symmetrically normed ideal, oprerator ideal.
It is well known that every Banach space with Shauder basis is separable. Converse proposition, as P.Enflo showed in 1973 [1] is not true. In the present work the problem of the existence of a Schauder basis in separable symmetrically normed ideals is considered. It is found that all such ideals have a basis. For particular case, symmetrically normed Lorentz ideals $\Upsilon_{p, q}$, a basis was built in [2].
The terminology of the article is based on [3].
Theorem. Let $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in a Hilbert space H. A sequence of linear continuous operators $\left\{A_{n}\right\}_{n=1}^{\infty}$ of the form

$$
A_{m^{2}+j}=\left\{\begin{array}{ll}
\left(\cdot, \phi_{m+1}\right) \phi_{j}, & 1 \leq j \leq m+1 \\
\left(\cdot, \phi_{2 m+2-j}\right) \phi_{m+1}, & m+1<j \leq 2 m+1
\end{array}, m=0,1, \ldots\right.
$$

forms a basis in every symmetrically normed ideal.
Proof. Let Υ be a separable symmetrically normed ideal. Since the ideal Υ is separable there is a symmetrically normed function $\Phi(x)$ so that $\Upsilon=\Upsilon_{\Phi}^{(0)}$. For every operator $A \in \Upsilon_{\Phi}^{(0)}$ we can write the Schmidt representation: $A=\sum_{j=1}^{\infty} s_{j}(A)\left(\cdot, x_{j}\right) y_{j}$. For every $\epsilon>0$ we can choose $n_{0} \in \mathbf{N}$ such that $\left\|A-A_{n_{0}}\right\|<\epsilon / 2$, where $A_{n_{0}}=\sum_{j=1}^{n_{0}} s_{j}(A)\left(\cdot, x_{j}\right) y_{j}$. For every $0<\delta<1$ and $\forall j \in \mathbf{N}$ there are $u_{j}, v_{j} \in \operatorname{span}\left\{\phi_{j}\right\}_{j=1}^{\infty}$ such as $\left\|x_{j}-u_{j}\right\|<\delta,\left\|y_{j}-v_{j}\right\|<\delta$. We have $\left\|\left(\cdot, x_{j}\right) y_{j}-\left(\cdot, u_{j}\right) v_{j}\right\|_{\Phi} \leq\left\|\left(\cdot, x_{j}-u_{j}\right) y_{j}\right\|_{\Phi}+\left\|\left(\cdot, u_{j}\right)\left(v_{j}-y_{j}\right)\right\|_{\Phi} \leq 3 \delta$.

If we take $\delta=\frac{\epsilon}{2 n_{o} s_{1}(A)}$ and $B_{n_{0}}=\sum_{j=1}^{n_{0}} s_{j}(A)\left(\cdot, u_{j}\right) v_{j} \in \overline{\operatorname{span}\left\{A_{n}\right\}_{n=1}^{\infty}}$ we get that $\left\|A_{n_{0}}-B_{n_{0}}\right\| \leq \epsilon / 2$. Thus $\left\|A-B_{n_{0}}\right\|_{\Phi} \leq\left\|A-A_{n_{0}}\right\|_{\Phi}+\left\|A_{n_{0}}-B_{n_{0}}\right\|_{\Phi}<\epsilon$. Hence, $A \in \operatorname{span}\left\{A_{n}\right\}_{n=1}^{\infty}$, in other words, the sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ is complete in Υ. We show that the sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ is minimal. To prove that it is sufficient to show that this system has a biorthogonal one.

Define $F_{m^{2}+j}=s p\left(X A_{m^{2}+j}^{*}\right)$, where $X \in \Upsilon_{\Phi}^{(0)}, s p(A)=\sum_{j=1}^{\infty}\left(A \phi_{j}, \phi_{j}\right)$ and $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ is a basis in H.

It is easy to note that $F_{m^{2}+j}$ is a linear bounded operator on $\Upsilon_{\Phi}^{(0)}$ and

$$
F_{m^{2}+j}=\operatorname{sp}\left(X A_{m^{2}+j}^{*}\right)=\left\{\begin{array}{ll}
1, & m=r, j=s \\
0, & m^{2}+j \neq r^{2}+s
\end{array} .\right.
$$

(c) E. Spinu, 2004

It follows that $\left\{F_{m^{2}+j}\right\}$ and $\left\{A_{m^{2}+j}\right\}$ are a biorthogonal system.
We consider the sequence of projectors $\left\{\mathfrak{P}_{n}\right\}_{n=1}^{\infty}$ of the form

$$
\begin{gathered}
\mathfrak{P}_{n}(A)=\sum_{j=1}^{n} F_{j}(A) A_{j} \mathfrak{P}_{m^{2}}(A)=\sum_{k=1}^{m} \sum_{j=1}^{m} s p\left(A\left(\cdot, \phi_{k}\right) \phi_{j}\right)\left(\cdot, \phi_{j}\right) \phi_{k}= \\
=\sum_{k=1}^{m} \sum_{j=1}^{m}\left(A \phi_{j}, \phi_{k}\right)\left(\cdot, \phi_{j}\right) \phi_{k}=P_{m} A P_{m}
\end{gathered}
$$

where $\left.P_{m} x=\sum_{j=1}^{m}(x, \phi) j\right) \phi_{j}, x=\sum_{j=1}^{\infty}\left(x, \phi_{j}\right) \phi_{j}$ and $\left\|P_{m}\right\|=1$. We therefore have $\left\|\mathfrak{P}_{m^{2}}(A)\right\|=\left\|P_{m} A P_{m}\right\|_{\Phi} \leq\|A\|_{\Phi}$ Hence, $\left\|\mathfrak{P}_{m^{2}}\right\| \leq 1$. Let $1 \leq j \leq m+1$. Then we have

$$
\begin{aligned}
& \mathfrak{P}_{m^{2}+j}(A)=P_{m} A P_{m}+\sum_{r=1}^{j} s p\left(A\left(\cdot, \phi_{r}\right) \phi_{m+1}\right)\left(\cdot, \phi_{m+1}\right) \phi_{r}=P_{m} A P_{m}+ \\
& \quad+\sum_{r=1}^{j}\left(A \phi_{m+1}, \phi_{r}\right)\left(\cdot, \phi_{m+1}\right) \phi_{r}=P_{m} A P_{m}+P_{j} A\left(P_{m+1}-P_{m}\right) .
\end{aligned}
$$

So, $\left\|\mathfrak{P}_{m^{2}+j}(A)\right\| \leq 3\|A\|_{\Phi}, \forall A \in \Upsilon_{\Phi}^{(0)}$. Let $m+2 \leq j \leq 2 m+1$. Then we have

$$
\begin{aligned}
\mathfrak{P}_{m^{2}+j}(A)= & P_{m+1} A P_{m+1}-\sum_{r=1}^{2 m+1-j} s p\left(A\left(\cdot, \phi_{r}\right) \phi_{m+1}\right)\left(\cdot, \phi_{m+1}\right) \phi_{r}= \\
& =P_{m+1} A P_{m+1}-P_{2 m+1-j} A\left(P_{m+1}-P_{m}\right) .
\end{aligned}
$$

So, $\quad\left\|\mathfrak{P}_{m^{2}+j}(A)\right\| \leq 3\|A\|_{\Phi}, \forall A \in \Upsilon_{\Phi}^{(0)}$.
Thus, $\left\|\mathfrak{P}_{n}\right\| \leq 3(n=1,2 \ldots)$. By criterion of basis in the Banach space [4], we obtain that $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a basis of the Banach space Υ.

References

[1] Enflo P. A counterexample to the approximation property in Banach spaces. Acta Math., 1973, 130, p. 309-317.
[2] Fugarolas M., Cobos F. On Schauder bases in the Lorentz operator ideal. J. Math. Anal. Appl., 1983, 95, p. 235-242.
[3] Gohberg I., Krein M. Introduction to the theory of linear nonself-adjoint operators. Moscow, Nauka, 1965 (in Russian).
[4] Singer I. Bases in Banach spaces I. Berlin-Heidelberg-New York, Springer, 1970.

Moldova State University
Received July 30, 2004
Department of Mathematics and Computer Science
str. A. Mateevici, 60
Chişinău, MD-2009 Moldova
E-mail: spino14@yandex.ru

