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Abstract. The paper is dedicated to the study of problem of Poisson stability (in
particular periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy,
Levitan almost periodicity, pseudo-periodicity, almost recurrence in the sense of Be-
butov, recurrence in the sense of Birkhoff, pseudo-recurrence, Poisson stability) and
asymptotical Poisson stability of motions of monotone non-autonomous differential
equations which admit a strict monotone first integral. This problem is solved in the
framework of general non-autonomous dynamical systems.
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1 Introduction

In this paper we study the problem of Bohr/Levitan almost periodicity, almost
automorphy, almost recurrence in the sense of Bebutov, recurrence in the sense of
Birkhoff and Poisson stability of solutions of monotone non-autonomous differential
equations

x′(t) = f(t, x(t)) (1)

having a strongly monotone first integral. We show that under some conditions
every bounded on semi-axis solution of equation (1) has a limiting regime which has
the same character of recurrence in time t as the right-hand side f of equation (1).

These types of problems for Bohr almost periodic differential equations were
studied by many authors [26, 34, 38] (see also the bibliography therein) and for
periodic/almost periodic difference equations in the works [17,24].

We solve this problem in the framework of abstract non-autonomous dynamical
systems with discrete time.

Our paper is organized as follow.

In the second section we collect some notions and facts from the non-autonomous
dynamical systems: cocycles, skew-product dynamical systems, some semigroups
related with non-autonomous dynamical systems, Poisson stable motions and their
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comparability by character of recurrence, monotone non-autonomous dynamical sys-
tems.

The third section is dedicated to the study the asymptotic behavior of monotone
non-autonomous dynamical systems having a strict monotone first integral.

In the fourth section we study different classes of Poisson stable (periodic, almost
periodic, almost automorphic, almost recurrent, recurrent, pseudo-periodic, pseudo-
recurrent and Poisson stable) and asymptotically Poisson stable motions of non-
autonomous dynamical systems admitting a strict monotone first integral.

The fifth section is dedicated to some applications of our general results obtained
in the third and fourth sections to the study of asymptotic behavior of solutions
of monotone non-autonomous differential equations having a strict monotone first
integral.

2 Some general properties of non-autonomous dynamical systems

In this section we collect some notions and facts from the non-autonomous dy-
namical systems [7] (see also [10, Ch.IX]) which we will use below.

2.1 Cocycles.

Let Y be a complete metric space, R (Z) be a group of real (integer) numbers,
R+ (Z+) be a semigroup of nonnegative real (integer) numbers, S be one of two
sets R or Z and T ⊆ S (S+ ⊆ T) be a subsemigroup of additive group S, where
S+ := {s ∈ S : s ≥ 0}. Let (Y,S, σ) be an autonomous two-sided dynamical system
on Y and E be a real or complex Banach space with the norm | · |.

Definition 1. (Cocycle on the state space E with the base (Y,Z, σ)). The triplet
〈E,φ, (Y,S, σ)〉(or briefly φ) is said to be a cocycle (see, for example,[10] and [25])
on the state space E with the base (Y,S, σ) if the mapping φ : S+ × Y × E → E
satisfies the following conditions:

1. φ(0, u, y) = u for all u ∈ E and y ∈ Y ;

2. φ(t+ τ, u, y) = φ(t, φ(τ, u, y), σ(τ, y)) for all t, τ ∈ S+, u ∈ E and y ∈ Y ;

3. the mapping φ is continuous.

Definition 2. (Skew-product dynamical system). Let 〈E,φ, (Y,S, σ)〉 be a cocycle
on E,X := E × Y and π be a mapping from S+ × X to X defined by equality
π = (φ, σ), i.e., π(t, (u, y)) = (φ(t, ω, u), σ(t, y)) for all t ∈ S+ and (u, y) ∈ E × Y .
The triplet (X,S+, π) is an autonomous dynamical system and it is called [25] a
skew-product dynamical system.

Definition 3. (Non-autonomous dynamical system.) Let T1 ⊆ T2 be two sub-
semigroups of the group S, (X,T1, π) and (Y,T2, σ) be two autonomous dynamical
systems and h : X → Y be a homomorphism from (X,T1, π) to (Y,T2, σ) (i.e.,
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h(π(t, x)) = σ(t, h(x)) for all t ∈ T1, x ∈ X and h is continuous), then the triplet
〈(X,T1, π), (Y, T2, σ), h〉 is called (see [3] and [10]) a non-autonomous dynamical
system.

Example 1. (The non-autonomous dynamical system generated by cocycle φ.) Let
〈E,φ, (Y,S, σ)〉 be a cocycle, (X,S+, π) be a skew-product dynamical system (X =
E × Y, π = (φ, σ)) and h = pr2 : X → Y, then the triplet 〈(X,S+, π), (Y,S, σ), h〉 is
a non-autonomous dynamical system.

We give below some general facts about non-autonomous dynamical systems
without proofs. The readers can find more details and the proofs in [7] (see also [11,
Ch.III]).

Definition 4. The point y ∈ Y is called positively (respectively, negatively) stable
in the sense of Poisson if there exists a sequence tk → +∞ (respectively, tk → −∞)
such that σ(tk, y) → y. If the point y is Poisson stable in the both directions, in this
case it is called Poisson stable.

Denote by Ny = {{tk}| σ(tk, y) → y}, N
+∞
y := {{tk} ∈ Ny| tk → +∞} and

N
−∞
y := {{tk} ∈ Ny| tk → −∞}.

Definition 5. Let (X,h, Y ) be a fiber space [18], i.e., X and Y be two metric
spaces and h : X → Y be a homomorphism from X into Y . The subset M ⊆ X
is said to be conditionally precompact [7, 10, 11] if the pre-image h−1(Y ′)

⋂

M of
every pre-compact subset Y ′ ⊆ Y is a pre-compact subset of X. In particularly
My = h−1(y)

⋂

M is a precompact subset of Xy for every y ∈ Y . The set M is
called conditionally compact if it is closed and conditionally precompact.

Let 〈(X,T, π), (Y,S, σ), h〉 be a non-autonomous dynamical system and y ∈ Y
be a positively Poisson stable point. Denote by

E±
y := {ξ| ∃{tk} ∈ N

±∞
y such that πtk |Xy → ξ},

where Xy := {x ∈ X| h(x) = y} and → means the pointwise convergence.
Let XX denote the Cartesian product of X copies of the space X equipped with

Tykhonov topology. The set XX can be provided with a semigroup structure with
respect to composition of the maps from XX (for more details see, for example,[3,
ChI] and [15]).

Lemma 1. [11, ChIII] Suppose that the following conditions are fulfilled:

1. y ∈ Y is a two-sided Poisson stable point;

2. 〈(X,S, π), (Y,S, σ), h〉 is a two-sided non-autonomous dynamical system;

3. X is a conditionally compact space;

4.
inf
t≤0

ρ(x1t, x2t) > 0

for any x1, x2 ∈ Xy (x1 6= x2).
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Then the following statement hold:

1. E−
y and E+

y are subgroups of the semigroup Ey;

2. for any pair of points x1, x2 ∈ Xy with x1 6= x2 there are some sequences
{t−k } ∈ N

−∞
y and {t+k } ∈ N

+∞
y such that

lim
k→∞

π(t±k , xi) = xi (i = 1, 2).

Definition 6. Let 〈E,φ, (Y,S, σ)〉 (respectively, (X,S+, π)) be a cocycle (respec-
tively, one-sided dynamical system). The continuous mapping ν : S → E (re-
spectively, γ : S → X) is called an entire trajectory of cocycle φ (respectively, of
dynamical system (X,S+, π)) passing through the point (u, y) ∈ E × Y (respec-
tively, x ∈ X) for t = 0 if φ(t, ν(s), σ(s, y)) = ν(t + s) and ν(0) = u (respectively,
π(t, γ(s)) = γ(t+ s) and γ(0) = x) for all t ∈ S+and s ∈ S.

Denote by

– C(S,X) the space of all continuous functions f : S 7→ X equipped with the
compact-open topology;

– Φx the family of all entire trajectories of (X,S+, π) passing through the point
x ∈ X at the initial moment t = 0 and Φ :=

⋃

{Φx : x ∈ X}.

Remark 1. Note that:

1. the compact-open topology (which coincides, in this case, with the point-wise
convergence) on the space C(S,X) is metrizable, for example, by distance

d(ϕ,ψ) :=

∞
∑

i=1

1

2i

di(ϕ,ψ)

1 + di(ϕ,ψ)
,

where di(ϕ,ψ) := max
|t|≤i

ρ(ϕ(t), ψ(t));

2. if γ ∈ Φx then γτ ∈ Φπ(τ,x), where γτ (t) := γ(t + τ) for any t ∈ S and,
consequently, Φ is a translation invariant subset of C(S,X);

3. if γk ∈ Φxk
and γk → γ as k → ∞ in C(S,X) then γ ∈ Φx, where x := lim

k→∞
xk

and, consequently, Φ is a closed subset of C(S,X).

2.2 Structure of the ω–limit set

Let x0 ∈ X. Denote by ωx0 the omega-limit set of the point x0, i.e., ωx0 := {x ∈
X : there exists a sequence {tk} such that tk → +∞ as k → ∞ and lim

k→∞
π(tk, x0) =

x}.
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Theorem 1. [11, Ch.III],[12] Let 〈(X,S+, π), (Y,S, σ), h〉 be a non-autonomous dy-
namical system, x0 ∈ X, Σ+

x0
:= {π(t, x0) : t ≥ 0} be a conditionally precompact set

and ωy0 6= ∅, where y0 := h(x0). Then the following statements hold:

1. ωx0

⋂

Xq 6= ∅ for any q ∈ ωy0 and, consequently, ωx0 6= ∅;

2. h(ωx0) = ωy0 ;

3. the set ωx0 is conditionally compact;

4. π(t, ωq
x0) = ω

σ(t,q)
x0 for any t ∈ S+ and q ∈ ωy0 , where ωq

x0 := ωx0

⋂

Xq;

5. ωx0 is invariant, i.e., π(t, ωx0) = ωx0 for any t ≥ 0.

Let 〈(X,S+, π), (Y,S, σ), h〉 be a non-autonomous dynamical system.

Definition 7. A subset A ⊆ X is said to be uniformly stable in the positive direction
if for arbitrary ε > 0 there exists δ = δ(ε) > 0 such that ρ(x, a) < δ (a ∈ A, x ∈ X
and h(a) = h(x)) implies ρ(π(t, x), π(t, a)) < ε for any t ≥ 0.

A point x0 ∈ X is called positively uniformly stable if the set Σ+
x0

:= {π(t, x0) :
t ≥ 0} is so.

Let
(

C(S,X),Z, λ
)

be the shift dynamical system (Bebutov’s dynamical system
[3,10,25,30]) on the space C(S,X). By Remark 1 Φ is a closed and invariant (with
respect to shifts) subset of C(S,X) and, consequently, on Φ a shift dynamical system
(Φ,S, λ) induced by

(

C(S,X),Z, λ
)

is defined.

2.3 Poisson stable motions and their comparability by character of

recurrence

Let (X,S, π) be a dynamical system.

Definition 8. A number τ ∈ S is called an ε > 0 shift of x (respectively, almost
period of x) if ρ(xτ, x) < ε (respectively, ρ(x(τ + t), xt) < ε for all t ∈ S).

Definition 9. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic) if for any ε > 0 there exists a positive number l such that at any segment
of length l there is an ε shift (respectively, almost period) of point x ∈ X.

Definition 10. If the point x ∈ X is almost recurrent and the set H(x) :=
{xt | t ∈ S} is compact, then x is called recurrent.

Definition 11. A point x ∈ X of the dynamical system (X,S, π) is called Levitan
almost periodic [22](see also [3,8] and [21]) if there exists a dynamical system (Y,S, σ)
and a Bohr almost periodic point y ∈ Y such that Ny ⊆ Nx.

Definition 12. A point x ∈ X is called stable in the sense of Lagrange (st.L), if its
trajectory {π(t, x) : t ∈ S} is relatively compact.
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Definition 13. A point x ∈ X is called almost automorphic in the dynamical
system (X,S, π), if it is st.L and Levitan almost periodic.

Definition 14. A point x ∈ X is said [9, ChI],[13] to be asymptotically station-
ary (respectively, asymptotically τ -periodic, asymptotically quasi-periodic, asymp-
totically Bohr almost periodic, asymptotically almost automorphic, asymptotically
recurrent, asymptotically Levitan almost periodic, asymptotically almost recurrent,
asymptotically Poisson stable) if there exists a stationary (respectively, τ -periodic,
quasi-periodic, Bohr almost periodic, almost automorphic, recurrent, Levitan almost
periodic, almost recurrent, Poisson stable) point p ∈ X such that

lim
t→+∞

ρ(π(t, x), π(t, p)) = 0.

We will present here some notions and results stated and proved by B. A.
Shcherbakov [30]-[33] (see also [11, Ch.I]).

Let (X,S, π) and (Y,S, σ) be two dynamical systems.

Definition 15. A point x ∈ X is said to be comparable with y ∈ Y by the character
of recurrence if for all ε > 0 there exists a δ = δ(ε) > 0 such that every δ–shift of y is
an ε–shift for x, i.e., d(σ(τ, y), y) < δ implies ρ(π(τ, x), x) < ε, where d (respectively,
ρ) is the distance on Y (respectively, on X).

Denote by N
∞
x := {{tk} ∈ Nx : such that tk → ∞ as k → ∞}.

Theorem 2. The following conditions are equivalent:

1. the point x ∈ X is comparable with y by the character of recurrence;

2. Ny ⊆ Nx;

3. N
∞
y ⊆ N

∞
x .

Denote by Mx,x̃ := {{tk} ⊂ Z such that {π(tk, x)} → x̃ as k → ∞}.

Theorem 3. Let x be comparable with y ∈ Y . If the point y ∈ Y is stationary
(respectively, τ–periodic, Levitan almost periodic, almost recurrent, Poisson stable),
then the point x ∈ X is so.

Definition 16. A point x ∈ X is called uniformly comparable with y ∈ Y by
character of recurrence if for all ε > 0 there exists a δ = δ(ε) > 0 such that every
δ–shift of σ(t, y) is an ε–shift for π(t, x) for all t ∈ Z, i.e., d(σ(t + τ, y), σ(t, y)) < δ
implies ρ(π(t + τ, x), x) < ε for all t ∈ S (or equivalently, d(σ(t1, y), σ(t2, y)) < δ
implies ρ(π(t1, x), π(t2, x)) < ε for all t1, t2 ∈ S).

Denote by Mx := {{tk} ⊂ Z : such that {π(tk, x)} converges }.

Definition 17. A point x ∈ X is said [6,9,11] to be strongly comparable by character
of recurrence with the point y ∈ Y if My ⊆ Mx.
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Theorem 4. Let y be stable in the sense of Lagrange. The inclusion My ⊆ Mx

takes place, if and only if the point x is stable in the sense of Lagrange and the point
x is uniformly comparable by character of recurrence with y.

Theorem 5. Let X and Y be two complete metric spaces, the point x be uniformly
comparable with y ∈ Y by the character of recurrence. If the point y ∈ Y is recurrent
(respectively, almost periodic, almost automorphic, uniformly Poisson stable), then
so is the point x ∈ X.

Below we present some generalization of B. A. Shcherbakov’s results concerning
the comparability of points by the character of their recurrence (more details see
in [4, 5] and also [11, ChI]).

Let T1 ⊆ T2 be two sub-semigroups of group Z (Ti = S or S+ and i = 1, 2).
Consider two dynamical systems (X,T1, π) and (Y,T2, σ).

Let M
+∞
x := {{tk} ∈ Mx : such that tk → +∞ as k → ∞} and N

+∞
x :=

{{tk} ∈ Nx : such that tk → +∞ as k → ∞}.
Denote by M

+∞
y,q := {{tk} ∈ M

+∞
y : such that σ(tk, y) → q as k → ∞}.

Theorem 6. Let y ∈ ωy, then the following conditions are equivalent:

a. N∞
y ⊆ N∞

x ;

b. N
+∞
y ⊆ N

+∞
x .

Theorem 7. Let y ∈ ωy, then the following conditions are equivalent:

a. M
∞
y ⊆ M

∞
x and N

∞
y ⊆ N

∞
x ;

b. M
+∞
y ⊆ M

+∞
x and N

+∞
y ⊆ N

+∞
x .

2.4 Monotone Non-autonomous Dynamical Systems

Recall that a Banach space E is ordered if it contains a closed convex cone P ,
that is, a non-empty closed subset P satisfying P + P ⊆ P , λP ⊆ P for all λ ≥ 0,
and P

⋂

(−P ) = {0}.
Assume that (E,P ) is an ordered Banach space with Int(P ) 6= ∅. For u1, u2 ∈ E,

we write u1 ≤ u2 if u2 − u1 ∈ P ; u1 < u2 if u2 − u1 ∈ P \ {0}; u1 ≪ u2 if
u2 − u1 ∈ Int(P ). Given u1, u2 ∈ P the set [u1, u2] := {u ∈ E| u1 ≤ u ≤ u2} is
called a closed order interval in P , and we write (u1, u2) := {u ∈ E| u1 < u < u2}.

A subset U of E is said to be order convex if for any a; b ∈ U with a < b, the
segment {a+ s(b− a)| s ∈ [0, 1]} is contained in U . And U is called lower-bounded
(resp. upper-bounded) if there exists an element a ∈ E such that a ≤ U (resp.
a ≥ U). Such an a is said to be a lower bound (resp. upper bound) for U . A lower
bound α is said to be the greatest lower bound (g.l.b.) or infimum if any other lower
bound a satisfies a ≤ α. Similarly, we can define the least upper bound (l.u.b.) or
supremum.

Let V = [0; b]X with b ≫ 0 or V = P , and furthermore, V be an order convex
subset of E.
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Let (X,h, Y ) be a local-trivial and normed vector bundle [18] with the norm | · |
and V ⊆ X be a nonempty closed subset possessing the following properties:

1. h(V ) = Y ;

2. Vy := V
⋂

Xy is a closed convex cone, that is, a non-empty closed subset Vy

satisfying Vy +Vy ⊆ Vy, λVy ⊆ Vy for all λ ≥ 0, and Vy
⋂

(−Vy) = {θy} for any
y ∈ Y .

We will use the order relation on (X,h, Y ). We write x1 ≤ x2 (respectively,
x1 < x2 or x1 ≪ x2) if h(x1) = h(x2) = y and x2 − x1 ∈ Vy (respectively, x2 − x1 ∈
Vy \ {θy} or x2 − x1 ∈ Int(Vy)).

Definition 18. A non-autonomous dynamical system 〈(X,S+, π), (Y,S, σ), h〉 is said
to be monotone (respectively, strictly monotone) if x1 ≤ x2 (respectively, x1 < x2)
implies π(t, x1) ≤ π(t, x2) (respectively, π(t, x1) < π(t, x2)) for any t > 0.

Recall that a forward orbit {π(t, x0)| t ≥ 0} of non-autonomous dynamical
systems 〈(X,Z+, π), (Y,Z, σ), h〉 is said to be uniformly stable if for any ε > 0,
there is a δ = δ(ε) > 0 such that ρ(π(t0, x), π(t0, x0)) < δ (h(x) = h(x0)) implies
d(π(t, x), π(t, x0)) < ε for every t ≥ t0.

Below we will use the following assumptions:

(C1) For every compact subset K in V ⊆ X and y ∈ Y the set Ky := h−1(y)
⋂

K
has both the greatest lower bound (g.l.b.) αy(K) and the least upper bound
(l.u.b.) βy(K).

(C2) For every x ∈ X, the semi-trajectory Σ+
x := {π(t, x) : t ≥ 0} is conditionally

precompact and its ω-limit set ωx is positively uniformly stable.

(C3) The non-autonomous dynamical system 〈(X,S+, π), (Y,S, σ), h〉 is monotone.

Lemma 2. [12] Suppose that the following conditions are fulfilled:

1. the points x, x0 ∈ X with h(x) = h(x0) are proximal, i.e., there is a sequence
tk → +∞ as k → ∞ such that lim

k→∞
ρ(π(tk, x), π(tk, x0)) = 0;

2. the points x0 ∈ X is uniformly positively stable.

Then the points x, x0 are asymptotic, that is, lim
t→+∞

ρ(π(t, x), π(t, x0)) = 0.

Lemma 3. [12] Assume that (C1)–(C3) hold, x0 ∈ X such that ωx0 is positively
uniformly stable. Let K := ωx0 be fixed and y0 := h(x0). Then if q ∈ ωq ⊆ ωy0,
αq := αq(K), K1 := ωαq , then the set K1

q := ωαq

⋂

Xq (respectively, ωβq

⋂

Xq)
consists of a single point γq (respectively, δq), i.e., K1

q = {γq} (respectively, {δq}).

Theorem 8. [12] (Comparability) Assume that (C1)–(C3) hold, x0 ∈ X such that
ωx0 is positively uniformly stable and y0 := h(x0). Then the following statements
hold:
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1. if y0 ∈ ωy0, then the point γy0 (respectively, βy0) is comparable by character of
recurrence with y0, i.e., N

+∞
y0

⊆ N
+∞
γy0

and

2.

lim
n→∞

ρ(π(t, αy0), π(t, γy0)) = 0 .

Corollary 1. Under the conditions (C1) − (C3) if the point y0 is τ -periodic (re-
spectively, Levitan almost periodic, almost recurrent, almost automorphic, recurrent,
Poisson stable), then:

1. the point γy0 is so;

2. the point αy0 is asymptotically τ -periodic (respectively, asymptotically Levitan
almost periodic, asymptotically almost recurrent, asymptotically almost auto-
morphic, asymptotically recurrent, asymptotically Poisson stable).

Definition 19. A point x0 ∈ X is said to be:

– pseudo-recurrent [29,33,35] if for any ε > 0, p ∈ Σx0 := {π(t, x0) : t ∈ S} and
t0 ∈ S there exists L = L(ε, t0) > 0 such that

B(p, ε)
⋂

π([t0, t0 + L], p) 6= ∅,

where B(p, ε) := {x ∈ X : ρ(p, x) < ε} and π([t0, t0 + L], p) := {π(tp) : t ∈
[t0, t0 + L]};

– uniformly Poisson stable [1] (or pseudo-periodic [2, ChII,p.32]) if for arbitrary
ε > 0 and l > 0 there exists a number τ > l such that ρ(π(t+τ, x), π(t, x)) < ε
for any t ∈ S.

Remark 2. 1. Every recurrent (respectively, uniformly Poisson stable) point is
pseudo recurrent. The inverse statement, generally speaking, is not true.

2. If x0 ∈ X is a pseudo-recurrent point, then p ∈ ωp for any p ∈ H(x0).

3. If x0 is a Lagrange stable point and p ∈ ωp for any p ∈ H(x0), then the point
x0 is pseudo-recurrent.

Definition 20. A point x ∈ X is said to be strongly Poisson stable if p ∈ ωp for
any p ∈ H(x).

Remark 3. Every pseudo-recurrent point is strongly Poisson stable. The inverse
statement, generally speaking, is not true.

Theorem 9. [12] (Strong comparability) Assume that (C1)–(C3) hold, x0 ∈ X
and y0 := h(x0) ∈ Y is strongly Poisson stable. Then the following statements hold:

1. the point γy0 (respectively, δy0) is strongly comparable by character of recur-
rence with y0, i.e., M

+∞
y0

⊆ M
+∞
γy0

and
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2.
lim

t→+∞
ρ(π(t, αy0), π(t, γy0)) = 0.

Corollary 2. Under the conditions (C1) − (C3) if the point y0 is τ -periodic (re-
spectively, quasi-periodic, Bohr almost periodic, recurrent, pseudo-recurrent and La-
grange stable, pseudo-periodic and Lagrange stable), then:

1. the point uy0 is so;

2. the point αy0 is asymptotically τ -periodic (respectively, asymptotically quasi pe-
riodic, asymptotically Bohr almost periodic, asymptotically recurrent, asymp-
totically pseudo-recurrent, asymptotically pseudo-periodic).

Remark 4. 1. If the point y0 is recurrent (in the sense of Birkhoff), then Corollary
2 coincides with the results of the work of J. Jiang and X.-Q. Zhao [20].

2. In the works of B. A. Shcherbakov [27,29],[30, ChV, Example 5.2.1] examples
of pseudo-recurrent and Lagrange stable motions which are not recurrent (in the
sense of Birkhoff) were constructed.

Definition 21. A point x ∈ X is said to be asymptotically strongly Poisson stable
if there exists a strongly Poisson stable point p ∈ X such that lim

t→+∞
ρ(π(t, x),

π(t, p)) = 0.

3 Convergence in Non-autonomous Dynamical Systems with a

Strict Monotone First Integral.

In this section we study the asymptotic behavior of monotone non-autonomous
dynamical systems having a strict monotone first integral.

Lemma 4. [4] Let 〈W,ϕ, (Y,S, σ)〉 be a cocycle and 〈(X,S+, π), (Y,S, σ), h〉 be a
non-autonomous dynamical system associated by cocycle ϕ. Suppose that x0 :=
(u0, y0) ∈ X := W × Y and the set Q+

(u0,y0)
:= {ϕ(t, u0, y0) | t ∈ S+} is compact.

Then the set H+(x0) := {π(t, x0) | t ∈ S+} is conditionally compact.

Definition 22. A continuous function V : X → R is said to be a first inte-
gral for dynamical system (X,T, π) (respectively, for the cocycle 〈E,ϕ, (Y,S, σ)〉)
if V (π(t, x)) = V (x) (respectively, V (ϕ(t, u, y), σ(t, y)) = V (u, y)) for any x ∈ X
(respectively, x = (u, y) ∈ X = E × Y ) and t ∈ T.

Definition 23. Let 〈(X,S+, π), (Y,S, σ), h〉 be a monotone non-autonomous dy-
namical system. A first integral V of dynamical system (X,S+, π) is called strictly
monotone if x1 < x2 (h(x1) = h(x2)) implies V (x1) < V (x2).

Theorem 10. Assume that (C1)−(C3) hold, V is a strictly monotone first integral
of dynamical system (X,S+, π) and x0 ∈ X is a point of X such that ωx0 is positively
uniformly stable. Let K := ωx0 be fixed and y0 := h(x0).

Then the following statements hold:
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1. if q ∈ ωy0 is Poisson stable (in the both directions), αq := αq(K), K1 := ωαq

then the set K1
q := ωαq

⋂

Xq (respectively, ωβq

⋂

Xq) consists of a single point
γq (respectively, δq), i.e., K1

q = {γq} (respectively, {δq});

2. γq ≤ αq ≤ βq ≤ δq;

3.
γq = αq (2)

and
βq = δq. (3)

Proof. The first and second statements of Lemma follow from Lemma 3.
We will establish the third statement. We only prove equality (2) since a similar

argument applies to (3). For any q ∈ ωx0 and x ∈ ωq
x0 := ωx0

⋂

h−1(q) we have

αq ≤ x

and hence
πtαq ≤ πtx

for any t ≥ 0. By Theorem 1 πtωq
x0 = ω

σ(t,q)
x0 for all t ∈ S+ and, consequently, we

obtain
πtαq ≤ νσ(t,q) ≤ πtx (4)

for any t ≥ 0 and x ∈ ωq
x0.

Now we will prove that γq = αq. Let x ∈ ωq
x0 be an arbitrary point, then there

is a sequence {tk} ∈ N
+∞
q such that

π(tk, x0) → x as k → ∞.

Since K = ωx0 is conditionally compact we can suppose that the sequence π(tn, ·)
∣

∣

Kq

is pointwise convergent and denote by ξ its limit. Note that ξ ∈ E+∞
q and taking

into account that by Lemma 1 E+∞
q is a group, then ξ(Kq) = Kq. Thus, for any

point x ∈ Kq and ξ ∈ E+∞
q there exists a (unique) point x̃ ∈ Kq such that ξ(x̃) = x.

By (4) we have
πtkαq ≤ πtk x̃ (5)

for any k ∈ N.
Passing to the limit in (5) as k → ∞ we obtain

α̃q ≤ x, (6)

where α̃q = ξ(αq) and x = ξ(x̃). Since x is an arbitrary point from Kq = ωq
x0, then

from (6) we obtain
α̃q ≤ αq.

Note that V (α̃q) = lim
k→∞

V (πtkαq) = V (αq), h(α̃q) = h(αq) = q and V is a strictly

monotone first integral, then we conclude that α̃q = αq. On the other hand α̃q ∈
ωαq

⋂

h−1(q) = {γq} and, consequently, αq = γq. Theorem is completely proved.
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Below we suppose that the non-autonomous dynamical system 〈(X,S+, π),
(Y,S, σ), h〉 is finite-dimensional, i.e., (X,h, Y ) is a real finite-dimensional vecto-
rial fiber with the fiber R

n. This means that for every point y ∈ Y there exists a
neighborhood U (y ∈ U) such that h−1(U) is isomorphic to R

n × U .
Let P : X → X be a projection, i.e., P (Xy) ⊆ Xy for any y ∈ Y and P 2 = P .

Let Pi : X → X (i = 1, . . . , n) be one-dimensional (i.e., Pi(Xy) is one-dimensional
subspace of Xy for any y ∈ Y ) projection such that PiPj = Θ and P1 + . . .+Pn = I,
where Θ, I : Y → X are such that Θy(x) = 0 and Iy(x) = x for any y ∈ Y and
x ∈ Xy.

Let x1, x2 ∈ X. We will write x1 <i x
2 (i = 1, . . . , n) if h(x1) = h(x2), x1 ≤ x2

and x1
i < x2

i , xi := Pi(x) and x = (x1, . . . , xn) ∈ X.
Condition (C4): A non-autonomous dynamical system 〈(X,S+, π), (Y,S, σ), h〉 is

said to be componentwise monotone if it is monotone and if x1 <i x
2 (h(x1) = h(x2))

implies π(t, x1) <i π(t, x2) for any t > 0 (i = 1, 2, . . . , n).
Denote by 2X the family of any compact subsets of X equipped with the Haus-

dorff metric.

Definition 24. Let K ∈ 2X and E ⊆ KK be a compact subsemigroup. A subset
A ⊆ K is said to be:

– E-invariant if AE ⊆ A, where AE :=
⋃

{Aξ : ξ ∈ E} and Aξ := {xξ :=
ξ(x)| x ∈ A};

– E-minimal if M is nonempty, E-invariant, closed and it does not contain an
own closed E-invariant subset.

Lemma 5. [11, Ch.IV] If A ⊆ K is a compact and E-invariant subset, then A
contains a nonempty compact E-minimal subset M ⊆ A.

Theorem 11. Assume that (C1)−(C4) hold, V is a strictly monotone first integral
of dynamical system (X,S+, π) and x0 ∈ X. Let K := ωx0 be fixed and y0 ∈ ωy0,
where y0 := h(x0).

Then the following statements hold:

1. γy0 = αy0 ∈ ωx0 (βq = δq ∈ ωx0);

2.

lim
t→+∞

ρ(π(t, x0), π(t, αy0)) = 0.

Proof. Since Σ+
x0

is conditionally compact and y0 ∈ ωy0, then the set ωy0
x0 = ωy0

⋂

Xy0

is nonempty and compact. By Lemma 5 there exists a compact E+∞
y0

minimal subset

My0 ⊆ ωy0
x0. Denote by M = H(My0) := {π(t,My0) : t ∈ S+}. It is not difficult to

check that M is the smallest conditionally compact invariant set containing My0.
We will show that M

⋂

Xy0 = My0. To prove this equality it is sufficient to
establish the inclusion M

⋂

Xy0 ⊆ My0 because the reverse inclusion is evident. If
y0 is a periodic point, then this statement is evident. Taking into account this fact
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without loss of generality we can suppose that is not periodic. Let x ∈ M
⋂

Xy0 ,
then x ∈ Xy0 and there exist sequences {tk} ∈ N

+∞
y0

and {xk} ⊆ My0 ⊆ ωy0
x0 such

that
x = lim

k→∞
π(tk, xk) . (7)

Since {xk} ⊆My0 andMy0 is a compact subset of ωy0
x0, then without loss of generality

we can suppose that the sequences {xk} and {πtk
∣

∣

ω
y0
x0
} converge. Denote by x̄ :=

lim
k→∞

xk and

ξ := lim
k→∞

πtk
∣

∣

ω
y0
x0
.

The convergence in the last equality is pointwise. Since the set ωx0 is positively uni-
formly stable, then {πtk} converges to ξ uniformly on ωy0

x0. This means, in particular,
that the map ξ : ωy0

x0 → ωy0
x0 is continuous and

lim
k→∞

ρ(π(tk, xk), ξ(xk)) = 0. (8)

Hence, we have

ρ(ξ(x̄), π(tk, xk)) ≤ ρ(ξ(x̄), ξ(xk)) + ρ(ξ(xk), π(tk, xk)) (9)

for any k ∈ N. Passing to the limit in (9) as k → ∞ and taking into consideration
(8) and the continuity of ξ on ωy0

x0 we obtain

ξ(x̄) = lim
k→∞

π(tk, xk) . (10)

From (7) and (10) we obtain x = ξ(x̄) ∈ ξ(My0) ⊆My0 , i.e., M
⋂

Xy0 = My0.
Let α̃y0 := αy0(M). By Lemma 3 the set ωα̃y0

⋂

Xy0 consists of a single point
{γ̃y0} and by Theorem 10 we have the equality α̃y0 = γ̃y0 .

It follows that for each i = 1, . . . , n, there is xi ∈My0 such that

xi
i = Pi(α̃y0) . (11)

By Theorem 1, we have
πtα̃σ−ty0

= α̃y0 (12)

for any t ∈ S+. Note that
α̃σ−ty0

≤ π−txi (13)

and
Pi(π

tα̃σ−ty0
) = Pi(α̃y0) = xi

i = Pi(π
tπ−txi). (14)

By Condition (C4),
Pi(α̃σ−ty0

) = Pi(π
−txi) (15)

for any t ∈ S+. Since My0 is a E+∞
y0

minimal subset of ωy0
x0 and E+∞

y0
= E−∞

y0
, then

for any i = 1, . . . , n there exists ξi ∈ E−∞
y0

such that ξi(xi) = x. On the other hand
for ξi ∈ E−∞

y0
there exists a sequence {tik} ∈ N

−∞
y0

(i = 1, . . . , n) such that

x = lim
k→∞

πti
kxi for any i = 1, . . . , n. (16)
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From (11)-(16) we have

Pi(α̃y0) = Pi(ξ
i(xi)) = Pi(x) ∀ x ∈My0 and i = 1, . . . , n,

i.e., αy0 = x for any x ∈My0. This means that My0 = {α̃y0}.
Let now tk → +∞ such that πtkx0 → αy0 ∈ My0 ⊆ ωy0

x0 as k → ∞. Since
y0 ∈ ωy0, then it is easy to see that {tk} ∈ N

+∞
y0

⊆ N
+∞
α̃y0

. Then we obtain

ρ(π(tk, x0), π(tk, α̃y0)) ≤ ρ(π(tk, x0), α̃y0) + ρ(α̃y0 , π(tk, α̃y0)) (17)

for any k ∈ N. Passing to the limit in (17) as k → ∞ and taking into account the
arguments above we obtain

lim
k→∞

ρ(π(tk, x0), π(tk, α̃y0)) = 0. (18)

Note that α̃y0 ∈ My0 ⊆ ωy0
x0 and, consequently, ωα̃y0

⊆ ωx0 . Taking into considera-
tion that the set ωx0 is positively uniformly stable and equality (18), by Lemma 2
we obtain

lim
t→+∞

ρ(π(t, x0), π(t, α̃y0)) = 0

and, consequently, ωα̃y0
= ωx0 . This means, in particular, that α̃y0 = αy0 . Theorem

is completely proved.

Let U ⊆ R
n, V ∈ C1(U,R) and denote by ∇V :=

(

∂V
∂x1

, . . . , ∂V
∂xn

)

.

Lemma 6. Assume that the following conditions are fulfilled:

(i) 〈Rn
+, ϕ, (Y,S, σ)〉 is a monotone cocycle;

(ii) there exists a first integral H ∈ C1(Rn
+,R) for cocycle ϕ with ∇H(x) ≫ 0 for

any x ∈ R
n
+;

(iii) ϕ(t, u0, y0) ((u0, y0) ∈ R
n
+ × Y ) is a bounded motion of the cocycle ϕ.

Then ϕ(t, u0, y0) is positively uniformly stable.

Proof. This statement may be proved using the same ideas as in the proof of Lemma
3.1 from [34]. Below we will present the details of this proof. Let e := (1, . . . , 1) ∈
R

n
+. Since ϕ(t, u0, y0) is bounded on S+, we can choose a sufficiently large real

number r > 0 such that
0 ≤ ϕ(t, u0, y0) ≤ q0 := re

for any t ≥ 0. Denote by

M := max
1≤i≤n

{

max
0≤x≤q0+e

Hxi
(x)

}

, m := min
1≤i≤n

{

min
0≤x≤q0+e

Hxi
(x)

}

.

Condition (ii) implies that M,m > 0. From the equality

H(y) −H(z) =

n
∑

i=1

∫ 1

0
Hxi

(z + s(y − z))ds(yi − zi) (∀ y, z ∈ R
n
+)
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it follows that

|H(y) −H(z)| ≤ nM‖y − z‖, ∀ 0 ≤ z, y ≤ q0 + e, (19)

and
|H(y) −H(z)| ≥ m‖y − z‖, ∀ 0 ≤ z ≤ y ≤ q0 + e, (20)

where ‖x‖ :=
∑n

i=1 |xi|.
Let ε0 := min{1, m

2nM }. For any given 0 < ε ≤ ε0, there is 0 < δ(ε) ≤ ε/2 such
that

ϕ(τ, u0, y0) − δ(ε)e ≤ ϕ(τ, u0, y0) ≤ ϕ(τ, u0, y0) + δ(ε)e ≤ q0 + e (21)

for any t ≥ 0. Put

p(ε, τ) := (max(ϕ1(τ, u0, y0) − δ(ε), 0), . . . , ϕn(τ, u0, y0) − δ(ε), 0))

and q(ε, t) := ϕ(t, u0, y0) + δ(ε)e. Note that

0 ≤ q(ε, τ) − p(ε, τ) = [ϕ(t, u0, y0) − δ(ε)e] − p(ε, τ) + 2δ(ε)e ≤ 2δ(ε)e

for all τ ≥ 0 and taking into consideration (19) and (21) we obtain

|H(p(ε, τ)) −H(q(ε, τ))| ≤ nMε (22)

for all t ≥ 0. For given τ ≥ 0, let

U(ε, τ) := {z ∈ R
n
+| p(ε, τ) ≤ z ≤ q(ε, τ)}.

Since the cocycle ϕ is monotone, then we will have

ϕ(t, p(ε, τ), σ(τ, y0)) ≤ ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)) ≤ ϕ(t, q(ε, τ), σ(τ, y0))

and
ϕ(t, p(ε, τ), σ(τ, y0)) ≤ ϕ(t, z, σ(τ, y0)) ≤ ϕ(t, q(ε, τ), σ(τ, y0))

for all t ≥ 0 and z ∈ U(ε, τ). Taking into consideration that H is a first integral for
the cocycle ϕ and inequality (22), we obtain

|H(ϕ(t, q(ε, τ), σ(τ, y0))) −H(ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)))| =

|H(q(ε, τ)) −H(ϕ(τ, u0, y0))| ≤ |H(q(ε, τ)) −H(p(ε, τ))| ≤ nMε

for all t ≥ 0.
By (20) and (21), we have

‖ϕ(t, q(ε, τ), σ(τ, y0)) − ϕ(t, ϕ(τ, u0, y0), σ(τ, y0))‖ ≤
nM

m
ε

for all t ≥ 0 with ϕ(t, q(ε, τ), σ(τ, y0)) ∈ [0, q0 + e]. We will show that

ϕ(t, q(ε, τ), σ(τ, y0)) ∈ [0, q0 + e] (23)
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for all t ≥ 0. If it is not true, then there exists a real number t∗ > 0 such that
ϕ(t, q(ε, τ), σ(τ, y0)) ∈ [0, q0 + e] for any t ∈ [0, t∗] and

‖ϕ(t∗, q(ε, τ), σ(τ, y0))‖ ≥ q0 + 1. (24)

On the other hand from inequality (23) we have

‖ϕ(t∗, q(ε, τ), σ(τ, y0))‖ ≤ ‖ϕ(t∗, q(ε, τ), σ(τ, y0)) − ϕ(t∗, ϕ(τ, u0, y0), σ(τ, y0))‖ +

‖ϕ(t∗, ϕ(τ, u0, y0), σ(τ, y0))‖ ≤ ‖q0‖ + nM
m ε ≤ ‖q0‖ + 1

2

which contradicts (24).
It then follows that for every z ∈ U(ε, τ) we have ϕ(t, z, σ(τ, y0)) ∈ [0, q0 + e] for

any t ≥ 0. Similarly, we can show that for any z ∈ U(ε, τ) we have

‖ϕ(t, q(ε, τ), σ(τ, y0)) − ϕ(t, z, σ(τ, y0))‖ ≤
nM

m
ε, (25)

for any t ≥ 0. Then (23) and (25) imply that for any z ∈ U(ε, τ) and t ≥ 0,

‖ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)) − ϕ(t, z, σ(τ, y0))‖ ≤

‖ϕ(t, ϕ(τ, u0, y0), σ(τ, y0)) − ϕ(t, q(ε, τ), σ(τ, y0))‖ +

‖ϕ(t, q(ε, τ), σ(τ, y0)) − ϕ(t, z, σ(τ, y0))‖ ≤ nM
m ε+ nM

m ε = 2nM
m ε. (26)

For any ε ∈ (0, ε0], τ ≥ 0, and y ∈ R
n
+ with ‖ϕ(τ, u, y0) − ϕ(τ, u0, y0)‖ ≤ δ(ε),

we have ϕ(τ, u, y0) ∈ U(ε, τ). Then the inequality (26) with u = ϕ(τ, u, y0) implies
that

‖ϕ(t+ τ, u, y0) − ϕ(t+ τ, u0, y0)‖ =

‖ϕ(t, ϕ(τ, u, y0), σ(τ, y0)) − ϕ(t, ϕ(τ, u0, y0), σ(τ, y0))‖ ≤ 2nM
m ε

for any t ≥ 0. Thus, ϕ(t, u0, y0) is uniformly stable.

4 Asymptotically almost periodic and asymptotically almost auto-

morphic motions of non-autonomous dynamical systems with a

strictly monotone first integral

This section is dedicated to the study of different classes of Poisson stable (pe-
riodic, almost periodic, almost automorphic, almost recurrent, recurrent, pseudo-
periodic, pseudo-recurrent and Poisson stable) and asymptotically Poisson stable
motions of non-autonomous dynamical systems admitting a strictly monotone first
integral.

Theorem 12. Assume that (C1) and (C4) hold and the following conditions are
fulfilled:

1. for every u ∈ R
n
+ and y ∈ Y the semi-trajectory ϕ(S+, u, y) is relatively com-

pact;
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2. 〈Rn
+, ϕ, (Y,S, σ)〉 is a monotone cocycle with the fiber R

n
+ over dynamical sys-

tem (Y,S, σ);

3. there exists a first integral V ∈ C1(Rn
+,R) for the cocycle ϕ with ∇V (x) ≫ 0

for any x ∈ R
n
+;

4. the point y is Poisson stable (in the both directions).

Then

1. the set ωy
x = ωx

⋂

Xy (x = (u, y) and X = R
n
+ × Y ) consists of a single point

x∗ = (u∗, y);

2. the point x∗ is comparable by character of recurrence with y, i.e., N
+∞
y ⊆ N

+∞
x∗ ;

3.

lim
t→+∞

ρ(π(t, x), π(t, x∗)) = 0 .

Proof. Let

〈(X,S+, π), (Y,S, σ), h〉 (27)

be a non-autonomous dynamical system generated by cocycle ϕ (X = R
n
+ × Y ,

π := (ϕ, σ) and h := pr2 : X → Y ). It is easy to check that under the conditions
of Theorem 12 the non-autonomous dynamical system (27) possesses the properties
(C1)− (C3). By Lemma 3 the set K1 := ωαy0

, then the set K1
y := ωαy

⋂

Xy consists
of a single point γy), i.e., K1

y = {γy}, where αy := αy(K) and K1 := ωαy .

According to Theorems 10 and 11 we have:

1. αy = γy ∈ ωx;

2. lim
t→∞

ρ(π(t, x), π(t, αy)) = 0.

By Theorem 8 the point γy is comparable by character of recurrence with y. To
finish the proof of Theorem it is sufficient to put x∗ = αy. Theorem is completely
proved.

Corollary 3. Under the conditions of Theorem 12 if the point y is stationary (re-
spectively, τ -periodic, Levitan almost periodic, almost recurrent, Poisson stable),
then the point x is asymptotically stationary (respectively, asymptotically τ -periodic,
asymptotically Levitan almost periodic, asymptotically almost recurrent, asymptoti-
cally Poisson stable).

Proof. This statement follows from Theorems 12 and 3.

Corollary 4. Under the conditions of Theorem 12 if the point y is almost automor-
phic (respectively, recurrent), then the point x is asymptotically almost automor-
phic (respectively, asymptotically τ -periodic, asymptotically Levitan almost periodic,
asymptotically recurrent).
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Proof. Let y be almost automorphic (respectively, recurrent). Since an almost au-
tomorphic (respectively, recurrent) point is Levitan almost periodic (respectively,
almost recurrent), then by Corollary 3 the point x is asymptotically Levitan almost
periodic (respectively, asymptotically almost recurrent). On the other hand we note
that the point y is almost automorphic (respectively, recurrent) and, consequently, it
is Lagrange stable in the positive direction. Taking into consideration that the point
x is conditionally Lagrange stable, then it is also Lagrange stable and, hence, it is
asymptotically almost automorphic (respectively, asymptotically recurrent).

Theorem 13. Assume that (C1) and (C4) hold and the following conditions are
fulfilled:

1. for every u ∈ R
n
+ and y ∈ Y the semi-trajectory ϕ(S+, u, y) is relatively com-

pact;

2. 〈Rn
+, ϕ, (Y,S, σ)〉 is a monotone cocycle with the fiber R

n
+ over dynamical sys-

tem (Y,S, σ);

3. there exists a first integral V ∈ C1(Rn
+,R) for the cocycle ϕ with ∇V (x) ≫ 0

for any x ∈ R
n
+;

4. the point y is strongly Poisson stable (in the both directions).

Then

1. for any q ∈ ωy the set ωq
x = ωx

⋂

Xq (x = (u, y) and X = R
n
+ × Y ) consists of

a single point xq = (uq, q);

2. the point x∗ := xy is strongly comparable by character of recurrence with y,
i.e., M

+∞
y ⊆ M

+∞
x∗ and N

+∞
y ⊆ N

+∞
x∗ ;

3.

lim
t→+∞

ρ(π(t, x), π(t, x∗)) = 0.

Proof. Consider the non-autonomous dynamical system (27) generated by cocycle
ϕ. It is not difficult to check that under the conditions of Theorem 12 the non-
autonomous dynamical system (27) possesses the properties (C1)−(C3). Let K1 :=
ωαy0

. By Lemma 3 for any q ∈ ωy the set K1
q := ωαy

⋂

Xq consists of a single point
γq), i.e., K1

q = {γq}, where αq := αq(K). According to Theorems 10 and 11 we have:

1. αq = γq =∈ ωx for any q ∈ ωy;

2. lim
t→∞

ρ(π(t, x), π(t, αy)) = 0.

By Theorem 9 the point γy is strongly comparable by character of recurrence
with y. To finish the proof oh Theorem it is sufficient to put x∗ = αy. Theorem is
completely proved.
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Corollary 5. Under the conditions of Theorem 13 if the point y is stationary (re-
spectively, τ -periodic, quasi-periodic, Bohr almost periodic, almost automorphic, re-
current, pseudo-recurrent and Lagrange stable, pseudo-periodic and Lagrange sta-
ble, strongly Poisson stable and Lagrange stable), then the point x is asymptotically
stationary (respectively, asymptotically τ -periodic, asymptotically quasi-periodic,
asymptotically Bohr almost periodic, asymptotically almost automorphic, asymp-
totically recurrent, asymptotically pseudo-recurrent, asymptotically pseudo-periodic,
asymptotically strongly Poisson stable).

Proof. This statement follows from Theorems 13 and 5.

5 Applications

5.1 Ordinary Differential Equations

Let R
n be an n-dimensional real Euclidean space with the norm | · |. Let us

consider a differential equation

u′ = f(t, u), (28)

where f ∈ C(R × R
n,Rn). Along with equation (28) we consider its H-class [3, 22,

25,30,33], i.e., the family of equations

v′ = g(t, v), (29)

where g ∈ H(f) = {fτ : τ ∈ R}, fτ (t, u) = f(t+ τ, u) for all (t, u) ∈ R × R
n and by

bar we denote the closure in C(R × R
n,Rn).

Condition (A1). The function f is said to be regular if for every equation (29)
the conditions of existence, uniqueness and extendability on R+ are fulfilled.

Denote by ϕ(·, v, g) the solution of equation (29), passing through the point
v ∈ R

n at the initial moment t = 0. Then we correctly defined a mapping ϕ :
R+ ×En ×H(f) → R

n, verifying the following conditions (see, for example,[3,25]):

1) ϕ(0, v, g) = v for all v ∈ R
n and g ∈ H(f);

2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ R
n, g ∈ H(f) and t, τ ∈ R+;

3) the mapping ϕ : R+ × R
n ×H(f) → R

n is continuous.

Denote by Y := H(f) and (Y,R, σ) a dynamical system of translations on Y ,
induced by dynamical system of translations (C(R × R

n,Rn),R, σ). The triplet
〈Rn, ϕ, (Y,R, σ)〉 is a cocycle on (Y,R, σ) with the fiber R

n. Thus the equation
(28) generates a cocycle 〈Rn, ϕ, (Y,R, σ)〉 and a non-autonomous dynamical system
〈(X,R+, π), (Y,R, σ), h〉, where X := R

n × Y , π := (ϕ, σ) and h : pr2 : X → Y .

Remark 5. Let F be a mapping from H(f)×R
n → R

n defined by equality F (g, x) =
g(0, x), then F possesses the following properties:

1. F is continuous;
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2. F (gτ , x) = g(τ, x) for any (g, x, τ) ∈ H(f) × R
n × R;

3. equation (28) (and its H-class (29)) can be rewritten as follows

x′ = F (σ(t, g), x) (g ∈ H(f)). (30)

Let R
n
+ := {x ∈ R

n : such that xi ≥ 0 (x := (x1, . . . , xn)) for any i = 1, 2, . . . , n}
be the cone of nonnegative vectors of R

n. By R
n
+ on the space R

n a partial order.
Namely: u ≤ v if v − u ∈ R

n
+ is defined.

Condition (A2). Equation (28) is monotone. This means that the cocycle 〈Rn, ϕ,
(H(f), R, σ)〉 (or shortly ϕ) generated by (28) is monotone, i.e., if u, v ∈ R

n and
u ≤ v then ϕ(t, u, g) ≤ ϕ(t, v, g) for all t ≥ 0 and g ∈ H(f).

Let K be a closed cone in R
n. The dual cone to K is the closed cone K∗ in the

dual space
(

R
n
)∗

of linear functions on R
n, defined by

K∗ := {λ ∈
(

R
n
)∗

: 〈λ, x〉 ≥ 0 for any x ∈ K},

where 〈·, ·〉 is the scalar product in R
n.

Let T = R or Z. Recall [36, 37] that the function f ∈ C(T × R
n,Rn) is said to

be quasimonotone if for any (t, u), (t, v) ∈ T × R
n and φ ∈

(

R
n
+

)∗
we have: u ≤ v

and φ(u) = φ(v) implies φ(f(t, u)) ≤ φ(f(t, v)).

Lemma 7. [12] Let f ∈ C(R × R
n,Rn) be a regular and quasimonotone function,

then the following statements hold:

1. if u ≤ v, then ϕ(t, u, f) ≤ ϕ(t, v, f) for any t ≥ 0;

2. any function g ∈ H(f) is quasimonotone;

3. u ≤ v implies ϕ(t, u, g) ≤ ϕ(t, v, g) for any t ≥ 0 and g ∈ H(f);

4. equation (28) is monotone.

Definition 25. A solution ϕ(t, u0, f) of equation (28) is said to be:

– uniformly Lyapunov stable in the positive direction, if for arbitrary ε > 0 there
exists δ = δ(ε) > 0 such that |ϕ(t0, u, f) − ϕ(t0, u0, f)| < δ (t0 ∈ R, u ∈ R

n)
implies |ϕ(t, x, f) − ϕ(t, x0, f)| < ε for any t ≥ t0;

– compact on R+ if the set Q := ϕ(R+, u0, f) is a compact subset of R
n, where

by bar the closure in R
n is denoted and ϕ(R+, u0, f) := {ϕ(t, u0, f) : t ∈ R+}.

Let f ∈ C(R × R
n,Rn), σ(t, f) be the motion (in the shift dynamical system

(C(R×Rn,Rn),R, σ)) generated by f , u0 ∈ Rn, ϕ(t, u0, f) be the solution of equation
(28), x0 := (u0, f) ∈ X := R

n × H(f) and π(t, x0) := (ϕ(t, u0, f), σ(t, f)) be the
motion of skew-product dynamical system (X,R+, π).
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Definition 26. A solution ϕ(t, u0, f) of equation (28) is called [9,30,33] compatible
(respectively, strongly compatible or uniformly compatible) if the motion π(t, x0) is
comparable (respectively, strongly comparable or uniformly comparable) by charac-
ter of recurrence with σ(t, f).

Remark 6. If x0 := (u0, y0) ∈ X := W × Y and αy0 (respectively, γy0) is a point
from X defined in Lemma 3 then we denote by αu0 (respectively, γu0) a point from
W such that αy0 = (αu0 , y0) (respectively, γy0 = (γu0 , y0)).

Recall that the function ϕ ∈ C(R,Rn) (respectively, f ∈ C(R×R
n,Rn)) possesses

the property (A) if the motion σ(·, ϕ) (respectively, σ(·, f)) generated by the function
ϕ (respectively, f) possesses this property in the dynamical system (C(R,Rn),R, σ)
(respectively, (C(R × R

n,Rn),R, σ)).

As property (A) stability in the sense of Lagrange (st. L), uniform stability
(un. st. L+) in the sense of Lyapunov, periodicity, almost periodicity, asymptotical
almost periodicity and other may serve.

For example, a function f ∈ C(R×R
n,Rn) is called almost periodic (respectively,

recurrent, asymptotically almost periodic, etc.) in t ∈ R uniformly with respect to
(w.r.t.) w on every compact subset from R

n if the motion σ(·, f) is almost peri-
odic (respectively, recurrent, asymptotically almost periodic, etc.) in the dynamical
system (C(R × R

n,Rn),R, σ).

Condition (A3). fi(t, x) ≥ 0 for all x ∈ Γi, t ∈ R and i = 1, . . . , n, where
Γi := {x ∈ R

n
+ : xi = 0}.

Remark 7. It is easy to see that if the function f satisfies Condition (A3), then
every function g ∈ H(f) possesses the same property.

Denote by

C0,1(R×R
n
+,R

n) := {f ∈ C(R×R
n
+,R

n)| ∃
∂f

∂xi
∈ C(R×R

n
+,R

n) for any i = 1, . . . , n}

equipped with the distance

d(f, g) =
∞

∑

k=1

1

2k

dk(f, g)

1 + dk(f, g)
,

where

dk(f, g) := max
|t|+|x|≤k

(

|f(t, x) − g(t, x)| + ‖
∂f

∂x
(t, x) −

∂g

∂x
(t, x)‖

)

and
∂f

∂x
(t, x) =

( ∂fi

∂xj
(t, x)

)n

i,j=1
.

Let (C0,1(R×Rn
+,R

n),R, σ) be the shift dynamical system on C0,1(R×Rn
+,R

n),
where σ(f, τ) := fτ for any f ∈ C0,1(R × R

n
+,R

n), τ ∈ R and fτ (t, x) := f(t+ τ, x)
for all t, τ ∈ R and x ∈ R

n
+.
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Condition (A4). f ∈ C0,1(R × R
n
+,R

n) and

∂fi

∂xj
(t, x) ≥ 0 (31)

for any t ≥ 0, x ∈ R
n
+ and i 6= j. If f ∈ C0,1(R × R

n
+,R

n), then we denote by H(f)
the closure in C0,1(R × R

n
+,R

n) of the family of all translations {fτ | τ ∈ R} of f .

Remark 8. If f ∈ C0,1(R × R
n
+,R

n) satisfies condition (31), then

1. for any g ∈ H(f) we have
∂gi

∂xj
(t, x) ≥ 0 (32)

for all t ≥ 0, x ∈ R
n
+ and i 6= j;

2. the cocycle ϕ generated by equation (28) is monotone.

The first statement is evident. The second statement follows from the first one
and Remark 1.1 [37, Ch.III, p.33].

Theorem 14. [14, Ch.V] Assume that f ∈ C(R × R
n
+,R

n) is regular, quasi-
monotone and 〈Rn

+, ϕ, (H(f),R, σ)〉 is the cocycle in R
n
+ generated by equation (28)

(respectively, by equation (30)). Then the condition

F(g, x) ≤ F (g, x)

for any (g, x) ∈ H(f) × R
n
+ implies that

φ(t, x, g) ≤ ϕ(t, x, g)

for any t ≥ 0, g ∈ H(f) and x ∈ R
n
+, where F ∈ C(H(f)× R

n
+,R

n) is some regular
function and 〈Rn

+, φ, (H(f),R, σ)〉 (shortly, φ) is the cocycle generated by equation

x′ = F(σ(t, g), x) (g ∈ H(f));

.

Lemma 8. Assume that the function f ∈ C(R×R
n
+,R

n) is regular, quasi-monotone
and f(t, 0) ≥ 0 for any t ∈ R. Then R

n
+ is a positively invariant subset of the cocycle

ϕ, generated by equation (28), i.e., ϕ(t, x, g) ∈ R
n
+ for any (t, x, g) ∈ R+×R

n
+×H(f).

Proof. Let g ∈ H(f), then it is easy to check that under the condition of Lemma 8
the function g is also regular, quasi-monotone and g(t, 0) ≥ 0 for any t ∈ R. Note
that F (g, x) = g(0, x) ≥ 0 for any (x, g) ∈ R

n
+ × H(f). By Theorem 14 we have

φ(t, x, g) ≤ ϕ(t, x, g) for any t ≥ 0, g ∈ H(f) and x ∈ R
n
+, where ϕ is the cocycle

generated by equation (28) (respectively, equation (30)) and φ is the cocycle defined
by equation x′ = 0, i.e., φ(t, x, g) = x for any x ∈ Rn

+, t ≥ 0 and g ∈ H(f). Thus we
have ϕ(t, x, g) ≥ x for any (t, x, g) ∈ R+×R

n
+×H(f). This means that ϕ(t, x, g) ≥ 0,

i.e., ϕ(t, x, g) ∈ R
n
+ for any (t, x, g) ∈ R+ × R

n
+ ×H(f). Lemma is proved.
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Lemma 9. [34] If f ∈ C0,1(R×R
n
+,R

n) satisfies condition (31), then ϕi(t, x
1, f) <

ϕi(t, x
2, f) for each t > 0 whenever x1 <i x

2.

Corollary 6. If f ∈ C0,1(R × R
n
+,R

n) satisfies condition (31), then ϕi(t, x
1, g) <

ϕi(t, x
2, g) for each t > 0 and g ∈ H(f) ⊂ C0,1(R × R

n
+,R

n) whenever x1 <i x
2.

Proof. This statement directly follows from Lemmas 8 and 9.

Lemma 10. Assume that f ∈ C(R × R
n,Rn) is almost automorphic (respectively,

recurrent) in t ∈ R uniformly with respect to u on every compact subset from R
n and

ϕ ∈ C(R,Rn) is a bounded on R and compatible solution of equation (28). Then ϕ
is also almost automorphic (respectively, recurrent).

Proof. Since the function f is almost automorphic (respectively, recurrent), then it
is Levitan almost periodic (respectively, almost recurrent) in t ∈ R uniformly with
respect to u on every compact subset from R

n. Taking into account that ϕ is a
compatible solution of equation (28), then by Lemma 4 it is Levitan almost periodic
(respectively, almost recurrent). Now to finish the proof of Lemma it is sufficient
to show that the function ϕ is Lagrange stable. Note that ϕ is bounded on R and,
consequently, K := ϕ(R) is a compact subset of R

n. Since f is almost automorphic
(respectively, recurrent), then it is Lagrange stable. This means, in particular, that
f is bounded on R ×K, i.e., there exists a C > 0 such that |f(t, ϕ(t))| ≤ C for any
t ∈ R. Thus we have

|ϕ′(t)| = |f(t, ϕ(t))| ≤ C

for all t ∈ R and, consequently, ϕ is uniformly continuous on R. Thus the function
ϕ is Lagrange stable and Levitan almost periodic (respectively, almost recurrent)
and, consequently, it is almost automorphic (respectively, recurrent). Lemma is
proved.

Theorem 15. Suppose that the following assumptions are fulfilled:

– the function f ∈ C(R×R
n,Rn) is positively Poisson stable in t ∈ R uniformly

with respect to u on every compact subset from R
n;

– each solution ϕ(t, u0, f) of equation (28) is bounded on R+;

– there exists a function V ∈ C1(Rn
+,R) with ∇V (x) ≫ 0 for any x ∈ R

n
+ and

(∇V (x), f(t, x)) = 0 for any (t, x) ∈ R × R
n
+.

Then under the conditions (A1) − (A4) the following statements hold:

1. R
n
+ is invariant with respect to cocycle ϕ generated by equation (28);

2. for any solution ϕ(t, u, f) of equation (28) there exists a solution ϕ(t, γu, f) of
(28) defined and bounded on R such that:

(a) ϕ(t, γu, f) is a compatible solution of (28);
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(b) lim
t→∞

|ϕ(t, u, f) − ϕ(t, γu, f)| = 0;

3. if the function f ∈ C(R×R
n,Rn) is stationary (respectively, τ -periodic, Levi-

tan almost periodic, almost recurrent, almost automorphic, recurrent, Poisson
stable) in t ∈ R uniformly with respect to u on every compact subset from
R

n, then ϕ(t, γu, f) is also stationary (respectively, τ -periodic, Levitan almost
periodic, almost recurrent, almost automorphic, recurrent, Poisson stable) and

4. ϕ(t, u, f) is asymptotically stationary (respectively, asymptotically τ -perio-
dic, asymptotically Levitan almost periodic, asymptotically almost recurrent,
asymptotically almost automorphic, asymptotically recurrent, asymptotically
Poisson stable).

Proof. Let f ∈ C(R × R
n,Rn) and (C(R × R

n,Rn),R, σ) be the shift dynamical
system on C(R × Rn,Rn). Denote by Y := H(f) and (Y,R, σ) the shift dy-
namical system on H(f) induced by (C(R × R

n,Rn),R, σ). Consider the cocycle
〈Rn, ϕ, (Y,R, σ)〉 generated by equation (28) (see Condition (A1)). Now to finish
the proof of Theorem it is sufficient to apply Theorems 3, 8, 12 and Lemmas 4, 10
and Corollary 6. Theorem is proved.

Definition 27. A function f is said to be strongly Poisson stable in t ∈ R uniformly
with respect to u on every compact subset of R

n if the point f ∈ C(R × R
n,Rn)

(respectively, the motion σ(t, f)) is strongly Poisson stable in shift dynamical system
(C(R × R

n,Rn),R, σ).

Theorem 16. Suppose that the following assumptions are fulfilled:

– the function f ∈ C(R × R
n,Rn) is strongly Poisson stable in t ∈ R uniformly

with respect to u on every compact subset from R
n;

– each solution ϕ(t, v, g) of equation (29) is bounded on R+;

– there exists a function V ∈ C1(Rn
+,R) with ∇V (x) ≫ 0 for any x ∈ R

n
+ and

(∇V (x), f(t, x)) = 0 for any (t, x) ∈ R × R
n
+.

Then under the conditions (A1) − (A4) the following statements hold:

1. Rn
+ is invariant with respect to cocycle ϕ generated by equation (28);

2. for any solution ϕ(t, v, g) of equation (29) there exists a solution ϕ(t, γv , g) of
(29) defined and bounded on R such that:

(a) ϕ(t, γu, g) is a strongly compatible solution of (29);

(b) lim
t→∞

|ϕ(t, v, )g − ϕ(t, γv , g)| = 0.
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3. if the function f ∈ C(R×R
n,Rn) is stationary (respectively, τ -periodic, Levi-

tan almost periodic, almost recurrent, almost automorphic, recurrent, strongly
Poisson stable) in t ∈ R uniformly with respect to u on every compact sub-
set from R

n, then ϕ(t, γu, f) is also stationary (respectively, τ -periodic, Levi-
tan almost periodic, almost recurrent, almost automorphic, recurrent, strongly
Poisson stable) and

4. ϕ(t, u, f) is asymptotically stationary (respectively, asymptotically τ -perio-
dic, asymptotically Levitan almost periodic, asymptotically almost recurrent,
asymptotically almost automorphic, asymptotically recurrent, asymptotically
strongly Poisson stable).

Proof. This statement can be proved similar to Theorem 15 using Theorems 5, 9,
13, Lemma 4 and Corollary 6. Theorem is proved.

Below we give an example of a first integral for a class of differential equations.

Example 2. Consider a system of differential equations







x′1(t) = λ1F1(t, x1(t), . . . , xn(t))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x′n(t) = λnFn(t, x1(t), . . . , xn(t)),

(33)

where λ1, . . . , λn are some positive constants.

System (33) can be rewrite in the vectorial form

x′ = f(t, x), (34)

where f = (λ1F1, λ2F2, . . . , λnFn). Along with equation (34) we will consider its
H-class

x′ = g(t, x), (g ∈ H(f)) (35)

where H(f) is the closure of the translations {fτ | τ ∈ R} of f .

Suppose that the functions f1, . . . , fn satisfy the following conditions (A5):

f1(t, x1, . . . , xn) + . . .+ fn(t, x1, . . . , xn) = 0 (36)

for any t ∈ R and x := (x1, . . . , xn) ∈ R
n.

Lemma 11. Suppose that the function f := (f1, . . . , fn) ∈ C(R × R
n,Rn) satisfies

the condition (A5), then the function V ∈ C(Rn,R) defined by equality

V (x1, . . . , xn) :=
n

∑

i=1

xi

λi

is a first integral for system of differential equations (33).
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Proof. Let x(t) = (x1(t), . . . , xn(t)) be an arbitrary solution of equation (33), then

∆V (x(t)) =
∑n

i=1
∆xi(t)

λi
=

∑n
i=1

λifi(t,x1(t),...,xn(t))
λi

=
∑n

i=1 fi(t, x1(t), . . . , xn(t)) = 0

for any t ∈ Z+ and, consequently, V (x(t)) = V (x(0)) = C (∀ t ∈ Z+). Lemma is
proved.

Corollary 7. Under the condition (36) every solution ϕ(t, u, f) of (34) passing
through the point u at the initial time t = 0 with u ∈ R

n
+ is bounded on R+.

Proof. This statement directly follows from Lemma 11. In fact, let u ∈ R
n
+, u 6= 0

and

u ∈Mα := {u ∈ R
n
+| u1 + u2 + . . .+ un = α},

then by Lemma 11 we have ϕ(t, u, f) ∈Mα ⊆ [0, α]n for any t ∈ Z+.

Theorem 17. Suppose that the function f ∈ C(R × R
n,Rn) is strongly Poisson

stable in t ∈ Z uniformly with respect to u on every compact subset from R
n.

Then under Conditions (A1)-(A5) the following statements hold:

1. R
n
+ is invariant with respect to cocycle ϕ generated by system of differential

equations (34);

2. for any solution ϕ(t, v, g) of equation (35) there exists a solution ϕ(t, γv , g) of
(35) defined and bounded on R such that:

(a) ϕ(t, γu, g) is a strongly compatible solution of (35);

(b) lim
t→∞

|ϕ(t, v, )g − ϕ(t, γv , g)| = 0;

3. if the function f ∈ C(R×R
n,Rn) is stationary (respectively, τ -periodic, Bohr

almost periodic, almost automorphic, recurrent, strongly Poisson stable) in
t ∈ R uniformly with respect to u on every compact subset from R

n, then
ϕ(t, γu, f) is also stationary (respectively, τ -periodic, Bohr almost periodic,
almost automorphic, recurrent, strongly Poisson stable) and

4. ϕ(t, u, f) is asymptotically stationary (respectively, asymptotically τ -perio-
dic, asymptotically Bohr almost periodic, asymptotically almost automorphic,
asymptotically recurrent, asymptotically strongly Poisson stable).

Proof. This statement follows from Theorem 16, Lemma 11 and Corollaries 6 and 7
.

Remark 9. In the case, when the right-hand side f of equation (33) is periodic
(respectively, almost periodic) in t ∈ R Theorem 17 coincides with the result in the
work [23] (respectively, in the work [26]).
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5.2 Linear Differential Equations

Let A(t) = (aij(t))
n
i,j=1 (t ∈ R) be a matrix possessing the following properties

aij(t) ≥ 0 and

n
∑

i=1

aij(t) = 0 (37)

for any i, j = 1, . . . , n with i 6= j and t ∈ R.
Let [Rn] be the family of all matrices A = (aij)

n
ij=1 with real coefficients aij ∈ R

and C(R, [Rn]) be the space of all matrix-functions A(t) = (aij(t))
n
i,j=1 equipped

with the distance

d(A,B) =

∞
∑

k=1

1

2k

dk(A,B)

1 + dk(A,B)
,

where dk(A,B) := max{||A(t) − B(t)|| : |t| ≤ k}. Denote by (C(R, [Rn]),R, σ) the
shift dynamical system on C(R, [Rn]), i.e., σ(a, τ) = Aτ and Aτ (t) := A(t + τ) for
any t, τ ∈ R and A ∈ C(R, [Rn]).

Remark 10. If the matrix A ∈ C(R, [Rn]) satisfies condition (37), then every matrix
B ∈ H(A) satisfies conditions (37).

Consider the differential equation

x′ = A(t)x (38)

and its H-class
y′ = B(t)y (B ∈ H(A)). (39)

Lemma 12. Suppose that the matrix A ∈ C(R, [Rn]) satisfies conditions (37), then
the function V : R

n
+ → R defined by equality

V (x1, x2, . . . , xn) = x1 + x2 + . . . + xn (40)

is a first integral for equation (38).

Proof. Let f(t, x) := A(t)x, then fi(t, x) =
∑n

j=1 aij(t)xj (i = 1, 2, . . . , n). Since the
matrix A(t) satisfies condition (37), then we have

n
∑

i=1

fi(t, x) =
n

∑

i=1

(

n
∑

j=1

aij(t)xj

)

=
n

∑

j=1

(

n
∑

i=1

aij(t)
)

xj = 0.

According to Lemma 11 the function V defined by (40) is a first integral for equation
(38). Lemma is proved.

Condition (A6). A matrix A(t) = (aij(t))
n
i,j=1 satisfies the following conditions:

aij(t) ≥ 0 for any i, j = 1, 2, . . . , n with i 6= j and t ∈ R.

Lemma 13. If the matrix A(t) satisfies Condition (A6), then any matrix B ∈ H(A)
satisfies the same condition.
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Proof. Assume that the matrix A(t) satisfies Condition (A6), then

aij(t) ≥ 0 (41)

for any t ∈ R and i, j = 1, 2, . . . , n with i 6= j. If B ∈ H(A), then there exists
a sequence {hk} ⊆ R such that B(t) = lim

k→∞
A(t + hk) and, consequently, bij(t) =

lim
k→∞

aij(t+ hk). From (41) we have

aij(t+ hk) ≥ 0 (42)

for any k ∈ N, t ∈ R and i, j = 1, 2, . . . , n. Passing to the limit in inequality (42) as
k → ∞ we obtain

bij(t) ≥ 0.

Lemma is proved.

Lemma 14. The following statements hold:

1. if the matrix A(t) ≥ 0 for any t ∈ R, then the cocycle ϕ, generated by equation
(38), is monotone, i.e., ϕ(t, u,B) ≤ ϕ(t, v,B) for any t ∈ R+ and B ∈ H(A)
whenever u ≤ v (u, v ∈ R

n
+);

2. the cocycle ϕ is componentwise monotone, i.e., ϕ(t, u,B)i < ϕi(t, v,B) for any
(t, B) ∈ R+ ×H(A) whenever u ≤ v and ui < vi (i = 1, 2, . . . , n).

Proof. The first statement follows from Remark 8. The second statement follows
from Lemma 9.

Corollary 8. If the matrix A(t) ≥ 0 for any t ∈ R, then the cone R
n
+ is positively

invariant with respect to cocycle ϕ, generated by equation (38). This means that
ϕ(t, v,B) ∈ R

n
+ for any t ∈ R+ whenever (v,B) ∈ R

n
+ ×H(A).

Proof. By Lemma 14 under the conditions of Corollary the cocycle ϕ is monotone.
Let v ≥ 0 and B ∈ H(A), then ϕ(t, v,B) ≥ ϕ(t, 0, B) = 0 for any t ∈ R+.

Theorem 18. Assume that A ∈ C(R, [Rn]) be a matrix possessing property (A6)
and it is strongly Poisson stable in t ∈ R.

Then the following statements hold:

1. the cone R
n
+ is positively invariant with respect to cocycle 〈Rn, ϕ, (H(A), R,

σ)〉 (or shortly ϕ), generated by equation (38) and its H-class (39);

2. the cocycle ϕ is monotone with respect to spacial variable;

3. the cocycle ϕ is componentwise monotone;

4. the function V : R
n
+ → R, defined by equality (40), is a first integral for non-

autonomous dynamical system, generated by equation (38);
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5. every solution ϕ(t, v,B) of every equation (39) is bounded on R+ and positively
uniformly stable;

6. for every solution ϕ(t, v,B) of every equation (39) there exists a unique solu-
tion ϕ(t, v̄, B) defined and bounded on R;

7. the solution ϕ(t, v̄, B) is strongly compatible and

lim
t→∞

|ϕ(t, u,B) − ϕ(t, ū, B)| = 0;

8. if the matrix-function A ∈ C(R, [Rn]) is stationary (respectively, τ -periodic,
Bohr almost periodic, almost automorphic, recurrent, strongly Poisson stable)
in t ∈ R, then ϕ(t, v̄, B) is also stationary (respectively, τ -periodic, Bohr al-
most periodic, almost automorphic, recurrent, strongly Poisson stable) and

9. ϕ(t, v,B) is asymptotically stationary (respectively, asymptotically τ -perio-
dic, asymptotically Bohr almost periodic, asymptotically almost automorphic,
asymptotically recurrent, asymptotically strongly Poisson stable).

Proof. The first statement follows from Corollary 8.
The second and third statements follow from Lemma 14.
The fourth statement directly follows from Lemma 12.
The fifth statement follows from Corollary 7.
The sixth, seventh, eighth and ninth statements follow from Theorem 17.

5.3 Linear Differential Equations with Constant Matrix

Let A = (aij)
n
i,j=1 be a matrix with aij ∈ R for any i, j = 1, 2, . . . , n and ϕ(t, x) :=

etAx (t ∈ R and x ∈ R
n). Assume that the matrix A = (aij)

n
i,j=1 possesses the

following property

aij ≥ 0 and

n
∑

i=1

aij = 0 (43)

for any i, j = 1, 2, . . . , n with i 6= j.
By Lemma 12 we have

n
∑

i=1

(etAx)i =

n
∑

i=1

xi,

then
ϕ(t, x) ∈M := M1 = {x ∈ R

n
+| x1 + x2 + . . .+ xn = 1}

for any x ∈ M and t ≥ 0. Thus on the set M a semigroup dynamical system
(M,R+, ϕ) is defined. Note that the set M is a compact and convex subset of R

n
+.

Let (X,T, π) be an arbitrary dynamical system on the complete metric space
(X, ρ), where ρ is a distance on X and π : T × X → X is a continuous map
satisfying the conditions: π(0, x) = x and π(t + s, x) = π(t, π(s, x)) for any x ∈ X
and t, s ∈ T.
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Recall [11, Ch.I] that a dynamical system is called compact dissipative if there
exists a nonempty compact K ⊆ X which attracts every compact subset M from
X, i.e.,

lim
k→∞

β(π(t,M),K) = 0, (44)

where β(A,B) := sup{ρ(x,B)| x ∈ A} and ρ(x,B) := inf{ρ(x, y)| y ∈ B}.
If (X,T, π) is compact dissipative and K is a nonempty compact subset figuring

in (44), then

J =
⋂

t≥0

π(t,K) (45)

is a nonempty, compact subset of X and it does not depend of the choice of K. The
set J is called Levinson center of the dynamical system (X,T, π).

Theorem 19. [11, Ch.II] If (X,T, π) is compact dissipative and J is its Levinson
center, then the following statements hold:

1. the set J is invariant, i.e., π(t, J) = J ;

2. J attracts every compact subset M of X;

3. J is orbitally stable, i.e., for arbitrary positive number ε > 0 there exists
a positive number δ = δ(ε) > 0 such that ρ(π(t, x), J) < ε for any t ≥ 0
whenever ρ(x, J) < δ.

Let M be a nonempty subset of X and

D+(M) :=
⋂

ε>0

⋃

t≥0

π(t, (B(M,ε))),

B(M,ε) := {x ∈ X| ρ(x,M) < ε}. If M consists of a single point m, then we put
D+(M) = D+({m}) = D+

m.

Lemma 15. [11, Ch.II] If the set M is compact, then D+(M) =
⋃

m∈M

D+
m.

Theorem 20. [11, Ch.II] If the dynamical system (X,T, π) is compact dissipative
and M is a nonempty compact and positively invariant subset of X, then M is
orbitally stable if and only if D+(M) = M .

Denote by Ω := {ωx| x ∈ X}, where ωx is the ω-limit set of the point x ∈ X.

Theorem 21. [11, Ch.II] If (X,T, π) is a compact dissipative dynamical system and
J is its Levinson center, then J = D+(Ω).

Denote by Fix(ϕ) the set of all stationary points of dynamical system (M,R+, ϕ).

Theorem 22. Let A = (aij)
n
i,j=1 ∈ [Rn] be matrix satisfying condition (43). Then

the following statements hold:
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1. the dynamical system (M,R+, ϕ) has a nonempty and compact set of stationary
points Fix(ϕ) ⊆M ;

2. for every x ∈M there exists lim
t→∞

ϕ(t, x) = px and px ∈ Fix(ϕ) for any x ∈M ;

3. every stationary point p ∈ Fix(ϕ) of (M,R+, ϕ) is positively stable, i.e, for any
positive number ε there exists a positive number δ = δ(ε) such that |ϕ(t, x) −
p| < ε for any t ∈ R+, whenever |x− p| < δ (x ∈M);

4. the dynamical system (M,R+, ϕ) is compact dissipative and its Levinson center
J coincides with the set Fix(ϕ);

5. Fix(ϕ) =
⋂

t≥0
ϕ(t,M) and it is convex;

Proof. The first, second and third statements of Theorem follow from Theorem 18
(items 5, 7, 8 and 9).

Note that the dynamical system (M,R+, ϕ) is compact dissipative. Denote by
J its Levinson center, then by (45) we have

J =
⋂

t≥0

ϕ(t,M). (46)

Denote by Ω the closure of all ω-limit set points of (M,R+, ϕ). Since ωx = px ∈
Fix(ϕ) for any x ∈ M and Fix(ϕ) is a closed subset of M , then Ω ⊆ Fix(ϕ). On
the other hand, Fix(ϕ) ⊆ Ω and, consequently, Ω = Fix(ϕ). By Theorem 21 we
have J = D+(Ω) = D+(Fix(ϕ)). Since the set Fix(ϕ) is compact, then by Lemma
15 we have D+(Fix(ϕ)) =

⋃

{D+
p | p ∈ Fix(ϕ)} and, consequently,

J =
⋃

{D+
p | p ∈ Fix(ϕ)}. (47)

Since the fixed point p is positively Lyapunov stable, then by Theorem 20 D+
p = {p}

and, consequently, from (47) we obtain

J = Fix(ϕ). (48)

From (46) and (48) we receive

Fix(ϕ) =
⋂

t≥0

ϕ(t,M).

Finally, we note that

M ⊇ ϕ(s,M) ⊇ ϕ(t,M)

for any 0 ≤ s ≤ t and taking into consideration that every set ϕ(t,M) (t ∈ R+) is
compact and convex, then we can conclude that the set Fix(ϕ) is convex.

Denote by Int(M) the interior of the set M .
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Lemma 16. Let A = (aij)
n
i,j=1 ∈ [Rn]. Suppose that the aij > 0 for any i, j =

1, . . . , n with i 6= j, then the matrix B := eA possesses the following properties:

1. B = (bij)
n
i,j=1 is positive, i.e., bij > 0 for any i, j = 1, 2, . . . , n;

2. B has at most one stationary point p, i.e., Bp = p.

Proof. Let n ∈ N be a naturale number and Bn := eA/n. Since

Bn = E +A/n+ . . . , (49)

where E ∈ [Rn] is the unite matrix, then for sufficiently large n the matrix Bn is
positive. Taking into consideration that

B = (Bn)n (50)

for any n ∈ N we conclude that the matrix B is also positive.
Now we will establish that the matrix B = eA has at most one fixed point. In

fact, if we suppose that it is not true, then there exist two different stationary points
p and p̄ of B, i.e., Bp = p, Bp̄ = p̄ and p 6= p̄.

Logically two cases are possible:

a. the vectors p and p̄ are linearly dependent, then without loss of generality we
can suppose that p̄ = βp for some β 6= 0. Since p, p̄ ∈M , then we have

1 =
n

∑

i=1

p̄i = β
n

∑

i=1

pi = β,

i.e., β = 1 and, consequently, p̄ = p. The last equality contradicts the choice
of p̄ (p̄ 6= p).

b. the vectors p and p̄ are linear independently. Since the matrix B is positive,
then it is irreducible and, consequently, it has not two linearly independent
nonnegative eigenvectors (see, for example,[16, Ch.XIII] Remark 3, page 342).

From a. and b. we conclude that B has at most one stationary point. Lemma
is completely proved.

Theorem 23. Let A = (aij)
n
i,j=1 ∈ [Rn]. Suppose that

aij > 0 for any i, j = 1, . . . , n with i 6= j

and
n
∑

i=1
aij = 0 for any j = 1, 2, . . . , n, (51)

then the following statements hold:

1. the dynamical system (M,R+, ϕ) has a unique stationary point p ∈M ;

2. the vector p ∈M is positive, i.e., pi > o for any i = 1, . . . , n;



ALMOST PERIODIC AND ALMOST AUTOMORPHIC SOLUTIONS . . . 71

3. p is globally asymptotically stable, i.e.,

(a) for any positive number ε > 0 there is a δ = δ(ε) > 0 such that |x−p| < δ
(x ∈M) implies |ϕ(t, x) − p| < ε for any t ∈ R+ and

(b)

lim
t→∞

ϕ(t, x) = p

for any x ∈M .

Proof. To prove Theorem 23, according to Theorem 22, it is sufficient to show that
the Levinson center J of the dynamical system (M,R+, ϕ) consists of a single point
{p} and {p} = J ⊂ Int(M).

At first, we will establish that the semi-cascade (M,A) has at most one fixed
point. In fact, if we suppose that it is not true, then J contains at least two different
points pi and p2 (p1 6= p2). This means that ϕ(t, pi) = pi for any t ∈ R+ and i = 1, 2.
In particular, we have

Bpi = pi (i = 1, 2), (52)

where B = ϕ(1, ·) = eA. By Lemma 16 (item (i)) the matrix B is positive. Taking
into consideration this fact we see that (52) contradicts Lemma 16 (item (ii)).

Secondly, we will establish that {p} = J ⊂ Int(M) and the vector p is positive.
In fact, since the matrix B = eA is positive, thenB(M) ⊆ Int(M) and, consequently,
p = B(p) ∈ B(M) ⊆ Int(M). This means, in particular, that the vector p is positive.
Theorem is completely proved.

Remark 11. Notice that Theorem 23 becames false if we replace condition (51)
(aij > 0 for any i 6= j) by (43) (aij ≥ 0 for any i 6= j). Namely, in this case the set
Fix(ϕ), generally speaking, is not reduced to a single point.

This statement can be confirmed by following example:

Example 3. Consider the following equation

x′ = Ax (x ∈ R
3) (53)

with the matrix

A =





0 0 0
0 −1 1
0 1 −1



 .

Let (R3,R, ϕ) be the dynamical system generated by equation (53) and (M,R+, ϕ)
be the semi-group dynamical system on M = {x ∈ R

3
+| x1 + x2 + x3 = 1} induced

by (R3,R, ϕ). It is possible to check that Fix(ϕ) = {pα| α ∈ [0, 1]}, where

pα =





α
(1 − α)/2
(1 − α)/2



 .
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