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Metoda  „catastrofelor” se bazează pe tehnica transformatelor Laplace şi Laplace-Stieltjes. Această metodă analizează 

evoluţia sistemului în baza unor evenimente aleatorii, numite „catastrofe”, datorită cărui fapt se reuşeşte de a atribui un 
anumit sens probabilist transformatelor menţionate [1].  

În această lucrare, metoda „catastrofelor” se aplică pentru a obţine caracteristicile probabilistice de evoluţie a mode-
lelor de aşteptare generalizate. Vor fi prezentate demonstraţii pentru repartiţia timpului total de servire a cererilor de 
prioritate k şi a timpului total de trecere la clasa de prioritate k pentru diferite scheme prioritare. Aceste caracteristici îşi 
găsesc aplicare în analiza evoluţiei reţelelor contemporane de bandă largă fără fir [2,3], în analiza şi optimizarea Centrelor 
de Apel [3,4] etc. Repartiţiile sunt obţinute în termenii transformatei Laplace-Stieltjes. Demonstraţiile sunt ilustrate prin 
desene. 

 
 
1. Introduction 
Analytical methods in queueing theory are based on Laplace and Laplace-Stieltjes transform technique, 

Z-transform, Markovian processes, stochastic calculus, martingales theory, matrix transformations, etc. 
In this paper we will present some analytical results obtained with Laplace and Laplace-Stieltjes trans-

form technique. 
1.1. Laplace and Laplace-Stieltjes transforms 
In this subsection we will present preliminary results about Laplace and Laplace-Stieltjes transforms, 

because are techniques used in method of “catastrophes”. Laplace and Laplace-Stieltjes transforms are 
characterized by remarkable properties that find their application in optics, operational calculus, functional 
analysis, probability theory, etc. 

Let A(t) be a complex-valued function of real argument  satisfying the following conditions: 
• A(t)=0, 0<∀t , and A(t) is a function with bounded variation on any segment  [0, T]; 
• 0s∃ , .)(.., 0tsMetAtsRM −≤∈  
Definition 1.1. The Laplace transform of a function A(t), for Re(s) > s0, is given by integral:  

dttAes st )()(
0
∫
∞

−=α  

It is denoted by )(sα  or ))](([ stAΛ . 
The Laplace transform has the following properties: 
Proposition 1.1. The Laplace transform is analytical in half-plane Re(s) > s0. 
Proposition 1.2. The Laplace transform is unique. Let be A1(t) and A2(t) two functions with Laplace 

transform )(1 sα , and respectively )(2 sα , and )(1 sα = )(2 sα for Re(s) > s0, then A1(t)=A2(t) in all 
continuity points of function A1(t) and A2(t). 

Proposition 1.3. The Laplace transform is linear. Let be )(sα – Laplace transform of function A(t) and 

)(sβ – Laplace transform of function B(t). If C (t) = aA(t)+bB(t) then )(sc = a )(sα +b )(sβ . 

Proposition 1.4. The Laplace transform of a convolution. If =⋅= )()()( tBtAtC  ∫
∞

−=
0

)()( τττ dBtA  

then )(sc = )(sα ⋅ )(sβ . 
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Let be A a random positive variable and A(t) its distribution function (a real-valued function with real 
argument). 

Definition 1.2. The Laplace-Stieltjes transform of function A(t) call the Lebesgue-Stieltjes integral: 

),()(
0

tdAes st∫
∞

−=α  

where .Cs∈  
It is denoted by )(sα  or ))](([ stASΛ . 
The following identity has a big importance, because make the connection between Laplace-Stieltjes and 

Laplace transform: 
If exist )(lim

0
tA

t↓
, then )(lim)(lim

0
stA

st
α

+∞→↓
=  

)()()(
0

ssdttAess st αα == ∫
∞

− . 

Let X is a random variable with distribution function FX(t), s.t. 
),()( tXPtFX ≤=  

then Laplace-Stieltjes transform of a random variable X can be represented as: 
].[)]([ sX

X eEtfS −=Λ  
1.2. The “catastrophes” method. Probabilistic interpretation of Laplace-Stieltjes transform 
The methods of “catastrophes” in the simplest version can be found in works of Danzig, he introduced the 

probabilistic interpretation of Laplace Stieltjes transform. In the Queueing Theory this method was first used 
by Klimov G.P. to study classical queueing systems, by Gnedenco B.V, Danielean A.A, Dimitrov B. and 
Ivanov G.A. to study priority queueing systems and by Klimov G.P and Mishkoy Gh. to study queueing 
system with orientation [5-8].  

The “catastrophes” method consists in introducing of supplementary random event. In this sense we can 
associate a well defined probabilistic sense to mathematical structures such as Laplace transform, generating 
function, etc. which then can be used to determine the probability of more complicated events. 

The essence of the method of introducing supplementary random event can be presented by the following 
lemma. 

Lemma 1.1. Laplace-Stieltjes transform value of distribution function of the positive random variable A, 
for s > 0 is equal to the probability that during the realization of random variable A, there has been no 
message of Poisson flow with parameter s, i.e. 

)( xAPMe sA <=−  
For the demonstration we should mention that 

}{)(
0

xAPtdAe st <=∫
∞

−  

and ]),[()( dtttAPtdA +∈= . 
The following theorem is a cornerstone of the method of “catastrophes” [9]. 
Theorem 1.1. Let X and Y be two independent random variable. Suppose that Y is exponential distributed, 

i.e. Y ~ Exp(s), and the density function of variable X is )(tf X . Then 
].[))](([)( XSstfYXP X Λ=Λ=<  

We present an example of direct application of “catastrophes” method, for queueing system of type  
M |G|1. 

Example 1.1. (Kendall equation) Consider the system M |G|1 Poisson arrival flows, with rate λ and 
random service time B with distribution function B(t). First, note that busy period and arrival moments are 
independent random variable identically distributed, with some distribution function, otherwise we can’t 
apply Laplace transform. Let β(s) be Laplace-Stieltjes transform of function B(t) and π(s) Laplace-Stieltjes 
transform of function Π(t). Using the “catastrophes” method we can show that: 

))).(1(()( sss πλβπ −+=  
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Proof. 

∑∫∑ ∫
≥

∞
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0

)( stdBetdBee tsststs βλπλλπλ === ∫∫
∞

−+−
∞

+−  

where ).(' sss λπλ −+=  
 
2. Some probabilistic characteristics of priority queueing  system  with  switchover time  

2.1. Description of system 
Let be a queueing system with r independent poissonian flows L1, . . . , Lr, with parameters a1, . . . , ar 

respectively. Period of service requests of flow Lk is a random variable Bk with distribution function Bk(x),  
k = 1, . . . , r. The system simultaneously can serve no more than one request, and if the system has served a 
request of a flow Li , that it could begin service of a request of a flow Lk , i = k, it is required to spend some 
time Ck for orientation of the system. Duration of orientation from Li to Lk (i = 1, . . . , r; i ≠ k) is a random 
variable with distribution function Ck(x). 

Preemptive priority. It means, that if in the system arrive the request of the highest priority from available 
in system then it interrupt orientation to service and service of a request and the system begin orientation to 
service the  higher  priority  request. The following disciplines of orientation and service for preemptive 
priority can be considered. 

The scheme 1.1. 
a) if during orientation of the system from Li to Lk (→ k) the request of a flow Lj arrives, j<k then orienta-

tion (→ k) is interrupted and at once orientation (→ j) begins. When the system will be free from 
requests of a priority above k, the interrupted orientation (→ k) begins anew (with new realization of 
time of orientation); 

b) if during service of a request  of a flow Lk the request  of a flow Lj arrives, j<k then the service is 
interrupted, orientation at once begins (→ j) and as soon as it is finished, service of the request led 
interruption begins. As soon as the system will be released (free) from requests of a priority above k, 
orientation (→ k) begins. When orientation (→ k) is finished, service of the interrupted request begins 
anew (with new realization of a service time). 

The scheme 1.2. 
a) the same, as a) schemes 1.1; 
b) the same, as b) schemes 1.1, but  the request  with the interrupted service “is lost”. 
The scheme 1.3. 
a) the same, as a) schemes 1.1; 
b) the same, as b) schemes 1.1, but  the request  with the interrupted service is served remained time. 
The scheme 1.4. 
a) the same, as a) schemes 1.1; 
b) the same, as b) schemes 1.1, but  the service of the interrupted request begins anew with former 

realization of a service time (identical service anew). 
The scheme 2.1. 
a) the same, as a) schemes 1.1, but  the  interrupted orientation is oriented remained  time; 
b) the same, as b) schemes 1.1. 
The scheme 2.2. 
a) the same, as a) schemes 2.1; 
b) the same, as b) schemes 1.2. 
The scheme 2.3. 
a) the same, as a) schemes 2.1; 
b) the same, as b) schemes 1.3. 
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The scheme 2.4. 
a) the same, as a) schemes 2.1; 
b) the same, as b) schemes 1.4. 
The scheme 3.1. 
a) the same, as a) schemes 1.1, but the interrupted orientation (→ k) begins anew with the  same 

realization  of time of orientation (identical  orientation anew); 
b) the same, as b) schemes 1.1. 
The scheme 3.2. 
a) the same, as a) schemes 3.1; 
b) the same, as b) schemes 1.2. 
The scheme 3.3. 
a) the same, as a) schemes 3.1; 
b) the same, as b) schemes 1.3. 
The scheme 3.4. 
a) the same, as a) schemes 3.1; 
b) the same, as b) schemes 1.4. 
Definition 2.1. k - cycle of orientation – begins from the moment of the beginning of orientation of the 

device to service ak - request; comes to an end at once as soon as the device is ready to start service of this 
request. Duration k - cycle of orientation is a random variable Nk with distribution function Nk(x) Laplace-
Stieltjes transform, which is νk(s). 

Definition 2.2. k - service cycle – begins from the moment of the beginning of service ak - request; comes 
to an end at once as soon as the system will be released  from this request. Duration k - service cycle is a 
random variable Hk with distribution function. Hk(x) Laplace-Stieltjes transform which is hk(s). 

Definition 2.3. Πk - period – begins from the moment of receipt ai - request i < k in free system; comes to 
an end at once as soon as the system is released from ak - requests. Duration Πk - period is a random variable 
Πk with distribution function Πk(x), Laplace-Stieltjes transform which is πk(s). 

In this section for specified above schemes, are obtained distributions of k - cycles of orientation and  
k - service cycles. 

The structure of k - cycle of orientation and k - cycle of service are illustrated with drawings. The common 
designs notations are specified in Fig.1. In demonstrations the expression “probability of this event is ...” is 
noted by abbreviation < ... >. 

 
Fig.1. Significance of the designs notations 

 
Let be νk(s) Laplace-Stieltjes transform of distribution functions of length k - cycles of orientation and 

hk(s) Laplace-Stieltjes transform of distribution function of length k - service cycles. For the described 
system take place the following expressions. 

Lemma 2.1. For schemes 1.1, 2.1 and 3.1 
1

11
1

1
1 )}()()](1[1){()( −

−−
−

−
− +−

+
−+= sss

s
ssh kkkk

k

k
kkk νπσβ

σ
σσβ  

Proof. Consider that independent of the system evolution occurring some events, named “catastrophes”, 
which forms a Poisson flow with parameter s>0. Consider also that during k– service cycle have not occurred 
“catastrophes”. Probability of this event is – hk(s). 



Seria “{tiin\e exacte [i economice” 

Matematic=     ISSN 1857-2073 
 

 9

For it is necessary and sufficient that: 
–  or there was finished service of k priority request and during its have not occurred “catastrophes” – 

>+< − )( 1kk s σβ  
– or during unfinished service of such request have not occurred “catastropphes” - 

>+−
+

< −
−

− )](1[ 1
1

1
kk

k

k s
s

σβ
σ

σ
, have not occurred “catastrophes” during Πk-1 period - >< − )(1 skπ , 

and also have not occurred “catastrophes” during the k– cycle of orientation - >< )(skν . 
The structure of k– cycle of service for mentioned schemes 1.1, 2.1 and 3.2 is presented on Fig.2. 

 
Fig.2  

 
The demonstration of the following Lemmas 2.2 - 2.7 are analogically. The sketch of the proof of the 

mentioned Lemmas is the following. We consider that during k– cycle of service (k– cycle of orientation) 
have not occurred “catastrophes”. The probability of this event is hk(s) (νk(s)). Then the same probabilities 
are determined using the structure of concrete scheme. 

Lemma 2.2. For schemes 1.2, 2.2 and 3.2 

)()()](1[)()( 11
1

1
1 sss

s
ssh kkkk

k

k
kkk νπσβ

σ
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−
− +−
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The structure of k – cycle of service for schemes 1.1, 2.1 and 3.2 is presented on Fig.3. 

 
Fig.3 

 
Lemma 2.3. For schemes 1.3, 2.3 and 3.3 

)]()(1)[()( 11 ssssh kkkkk νπσβ −− −+=  
The structure of k – cycle of service for schemes 1.3, 2.3 and 3.3 is presented on Fig.4. 

 
Fig.4 
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We note by D the period of time, beginning with (k → i), i < k orientation and ending when the system is 
ready to continue the serving of interrupted request. 

Lemma 2.4. For schemes 1.4, 2.4 and 3.4 
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∞
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Lemma 2.5. For schemes 1.1-1.4 
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The structure of k – cycle of orientation for schemes 1.1 - 1.4 is presented on Fig.5. 

 
Fig.5 

 
We note by M the period of time, beginning with (i → k), i < k orientation and ending when the system 

becomes free of requests of type a1, . . . , ak-1, in the assumption that during (i → k) orientation arrive 
requests of type a1, . . . , ak-1. 

Lemma 2.6. For schemes 2.1-2.4 
)])(1[()( 11 sscs kkkk −− −+= πσν . 

The structure of k – cycle of orientation for schemes 2.1 - 2.4 is presented on Fig.6. 
 

 
Fig.6 

 
Lemma 2.7. For schemes 3.1-3.4. 
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Conclusion 
In this paper, method of “catastrophes” was applied to obtain some probabilistic characteristics of evolu-

tion priority queuing models with switchover time. Namely the distributions of length of k–cycle of service 
and k–cycle of orientation, for different schemes of service and orientation were obtained. The distributions 
were obtained in terms of Laplace-Stieltjes transform. We can use this method also for obtain the others proba-
bilistic characteristics of priority queueing systems, such as busy period of system with k priority requests 



Seria “{tiin\e exacte [i economice” 

Matematic=     ISSN 1857-2073 
 

 11

and higher than k, etc. These characteristics find their application in various practical problems, for example 
in analyzing the evolution of contemporary broadband wireless networks [2,3], analysis and optimization of 
Call centers [3,4]. 
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