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LINEAR PROGRAMMING APPROACH FOR MARKOV DECISION PROBLEMS WITH 

AVERAGE COST OPTIMIZATION CRITERION 

Maria CAPCELEA 

Chair of Applied Mathematics 
 
În lucrare este demonstrată echivalenţa problemei decizionale Markov cu problema stocastică de control optimal pe 

reţea. Acest rezultat permite de a aplica metoda programării liniare la determinarea strategiilor staţionare optimale în 
procesele decizionale Markov cu criteriul de optimizare a costului mediu. 

 
 
1. Introduction and Problem Formulation 
The linear programming approach we extend for Markov decision problem with average cost optimization 

criterion. We show that an arbitrary Markov decision problem can be transformed into a stochastic control 
problem on network, and vice versa an arbitrary stochastic control problem on network can be formulated as 
a Markov decision problem. Thus, the considered problems are equivalent and therefore the linear programming 
approach can be developed and specified for Markov decision problems. 

A Markov decision process [1-3] is determined by a tuple ( , , , )X A p c , where X  is a finite state space, 
A  is a finite set of actions, p  is a nonnegative real function :p A X X R+× × →  that satisfy the condition  

, = 1,a
x y

y X

p a A
∈

∀ ∈∑  and c  is an arbitrary real function :c A X X× × →R . 

The function p  for a fixed action a A∈  and arbitrary ,x y X∈  determines the probability ,
a
x yp  of the 

system’s transition from the state x X∈  at the moment of time t  to state y  at the moment of time 1t +  for 
every = 0,1,2, ...t . The function c  for a fixed action a X∈  and arbitrary ,x y X∈  determine the cost 

,
a
x yc  of system’s transition from the state x  to the state y  when the system makes transition from x  to y  

with the probability ,
a
x yp . In the considered Markov process the functions p  and c  do not depend on time, 

i.e. we have a stationary Markov decision process. We assume that at the moment of time = 0t  the dynamical 
system is in the state 

0i
x . 

A stationary strategy s  in the Markov process we define as a map  
: ( ) ,s x a A x for x X→ ∈ ∈  

where ( )A x  represents the set of actions in the state x X∈ . An arbitrary stationary strategy s  induces a simple 
Markov process with the transition probability matrix  ,= ( )s s

x yP p  and transition cost matrix ,= ( )s
x yC c . 

For this Markov process we can determine the expected average cost per transition 
0i

s
xω  when the dynamical 

system starts transitions in the state 
0i

x  at the moment of time = 0t . This quantity we denote 
0
( )

ixf s , i.e.  

0 0
( ) = .

i i

s
x xf s ω  

We consider the Markov decision problem with average cost criterion, i.e we are seeking for a strategy *s  
for which  

0 0

*( ) min ( ).
i ix xs

f s f s=  

For an arbitrary Markov decision problem we may assume that the action sets in different states are different, 
i.e. ( ) ( )A x A y≠ . However it is easy to observe that an arbitrary problem can be reduced to the case  
| ( ) |=| ( ) |=| |, ,A x A y A x y X∀ ∈  introducing some copies of the actions in the states y X∈  if for two 
different states ,x y X∈   holds | ( ) |<| ( ) |A y A x . 
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In the case | ( ) |=| ( ) |=| |, ,A x A y A x y X∀ ∈  a Markov decision process can be given by 2 | |A  matrices 

, ,= ( ), = ( ), = 1,2, ,| |a a a ak k k
x y x yP p C c k AK , where , = 1,ak

x y ky X
p a A

∈
∀ ∈∑ . A fixed strategy 

: ( )ks x a A x→ ∈  for x X∈  

generates a simple Markov process with the probability transition matrix sP  and transition cost matrix sC  
induced by the roes of the corresponding matrices akP  and , = 1, 2, ,| |,akC k AK  respectively. 

Using the matrix representation of the Markov decision processes we can show that the stochastic control 
problem with average cost criterion can be represented as a Markov decision problem. Indeed, the matrix 
representation of the control problem corresponds to the case when 1 2 1 2= ( ),X X X X X∪ ∩  where for an 

arbitrary state 1ix X∈  the probabilities ,
ak
x yi

p  are equal to 0  or 1 and for an arbitrary state 2ix X∈  the 

corresponding i th−  rows in the matrices  1 2, , , Aaa aP P PK  and 1 2, , , Aaa aC C CK  are the same. This means 
that an arbitrary stochastic control represent a particulary case of the Markov decision problem. 

In the next section we show that an arbitrary Markov decision problem with average cost criterion can be 
reduced to a stochastic control problem on an auxiliary network. In a such way we prove that the considered 
problems are equivalent. Using the reduction procedure of Markov decision problem to stochastic control 
problem we propose an algorithm for determining the optimal stationary strategies for Markov decision 
problem. 

2. Algorithm for Solving Markov Decision Problem Using a Reduction Procedure to Stochastic 
Control Problem  

Let us show that the problem of determining the optimal stationary strategies *s  in a Markov decision 
process ( , , , )X A p c  with average cost can be reduced to the problem of determining the optimal stationary 
strategy in the control problem on a network 

01 2( , , , , , )iG X X p c x′ ′ ′ ′ ′ ′ , where 1 2= ( , ), , , ,G X E X X p c′ ′ ′ ′ ′ ′ ′  
and 

0i
x  are defined in the following way. The set of vertices  1 2=X X X′ ′ ′∪  contains (| | 1) | |A X+  

vertices, where 1| |=| |X X′  and 2| |=| || |X A X′ . So, the set of controllable states in the control problem 
consists of a copy of set of states X  and the set of uncontrollable states 2X ′  consists of | |A  copies of the 
set of states X . Strictly 1X ′  and 2X ′  we define as follows: 

1 2= { = | }; = ,a

a A

X x x x X X X
∈

′ ′ ′∈ U  

where  
= { = ( , ) | }, .a aX x x a x X a A∈ ∀ ∈  

The set of directed edges E′  we also represent as a couple of two disjoint subsets 1 2=E E E′ ′ ′∪ , where 

1E′  is the set of outgoing edges from 1x X′∈  and 2E′  is the set of outgoing edges from 2
ax X ′∈ . The sets 

1E′  and 2E′  are defined as follow:  
 1 1 2= {( , ( , )) | ; ( , ) , };E x x a x X x a X a A′ ∈ ∈ ∈   
 2 2 1 ,= {(( , ), ) | ( , ) , , > 0, }.a

x yE x a y x a X y X p a A′ ′∈ ∈ ∈  
On the set of directed edges E′  we define the cost function :c E′ ′ → R , where  

 1= 0, = ( , ( , )) ;ec e x x a E′′ ′ ′∀ ∈  ,= a
e x yc c′′   for  2= (( , ), ) ( , , )e x a y E x y X a A′ ′∈ ∈ ∈ . 

On 2E′  we define the transition probability function 2: [0,1]p E′ ′ → , where , 2= =(( , ), )a
e x yp p for e x a y E′′ ′ ′∈ . 

It is easy to observe that between the set of stationary strategies S  in the Markov decision process and 
the set of strategies S ′  in the control problem on network 1 2 0

( , , , , , )iG X X p c x′ ′ ′  there exist a bijective 

mapping that preserve the average cost per transition. Therefore if we find the optimal stationary strategy for 
the control problem on network then we can determined the optimal stationary strategy in Markov decision 
process. 
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The network constructed above gives a graphical interpretation of the Markov decision process via the 
structure of the graph G , where the actions and all possible transitions for an arbitrary fixed action are 
represented by arcs and nodes. A more simple graphical interpretation of the Markov decision process may 
be given by the multigraph = ( , )GM X EM  (graph with parallel directed edges) with the set of vertices X  
that corresponds to the set of states and the set of edges EM  that consists of | |A  subsets 1 2 | |, , , AEM EM EMK  

| |

=1
=

A

i
i

EM EM⎛ ⎞
⎜ ⎟
⎝ ⎠

U , where ,{ ( , ) |i i ia a a
i x yEM e x y p= = >  0}> , = 1,2, ,| ( ) |i A xK . 

The graphical interpretation of the Markov decision process and an example how to solve the decision 
problem using reduction procedure to an auxiliary control problem on network are given bellow. 

Example. Consider a Markov decision process ( , , , )X A p c  where = {1,2}, = 1,2X A  and the possible 
values of the corresponding probability and cost functions : [0,1]p X X A× × → , :c X X A× × → R  are 
defined as follows:  
 1 1 1 1

1,1 1,2 2,1 2,2= 0.7, = 0.3, = 0.6, = 0.4,a a a ap p p p  2 2 2 2
1,1 1,2 2,1 2,2= 0.4, = 0.6, = 0.5, = 0.5;a a a ap p p p  

 1 1 1 1
1,1 1,2 2,1 2,2= 0.7, = 0.3, = 0.6, = 0.4,a a a ac c c c  2 2 2 2

1,1 1,2 2,1 2,2= 0.4, = 0.6, = 0.5, = 0.5.a a a ac c c c  
We consider the problem of finding the optimal stationary strategy for the corresponding Markov decision 

problem with minimal average cost and an arbitrary fixed starting state. 
The data concerned with the actions in the considered Markov decision problem can be represented in a 

suitable form using the probability matrices  

 1 2
0.7 0.3 0.4 0.6

= , =
0.6 0.4 0.5 0.5

a aP P⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and the matrices of transition cost  

 1 2
1 0 0 4

, = .
2 5 2 3

a aC C⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

On fig. 1 this Markov process is represented by the multigraph = ( , )GM X EM  with the set of vertices 
= {1,2}X . The set of directed edges EM  contains parallel directed edges that correspond to probability 

transitions from one state to another for different actions. 

 
On fig. 2 is represented the graph = ( , )G X E′ ′ ′ . In G′  the sets 1 2 1 2, , ,X X E E′ ′ ′ ′  are defined as follows:  

 1 2
1 2= {1,2}, = = {(1,1), (1,2), (2,1), (2, 2)}X X X X′ ′ ∪  

where 
 1 2= {(1,1), (1,2)}, = {(2,1), (2,2)}X X  
and 
 1 = {(1, (1,1)), (1, (1,2)), (1, (2,1)), (1, (2,2)),E′  (3, (1,1)), (2, (1,2)), (2, (2,1)), (2, (2,2))},  
 2 ={((1,1),1), ((1,1),2), ((2,1),1), ((2,2),1),E′  ((1,2),2), ((2,1),2), (2,2),2)}.  

Fig.1 
Fig.2 
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The probabilities ( , ), ,= = a
e x a y x yp p p′ ′  for directed edges 2(( , ), )x a y E′∈  are written along the edges in 

fig. 2; and the costs of directed edges from E′  are defined in the following way: 
 1,(1,1) 1,(1,2) 1,(2,1) 1,(2,2)= = = = 0,c c c c  2,(1,1) 2,(1,2) 2,(2,1) 2,(2,2)= = = = 0,c c c c  

 (1,1),1 (1,1),2 (2,1),1 (2,2),1= 1, = 0, = 2, = 2,c c c c− (1,2),1 (1,2),2 (2,1),2 (2,2),2= 0, = 4, = 5, = 3.c c c c −  
The set of possible stationary strategies for this Markov decision process consists of four strategies, i.e. 

1 2 3 4= { , , , }S s s s s  where  
1

1 1:1 , 2 ;s a a→ →  2
1 2:1 , 2 ;s a a→ →  3

2 1:1 , 2 ;s a a→ →  4
2 2:1 , 2 .s a a→ →  

A fixed strategy s  in Markov decision process generates a simple Markov process with transition costs, 
where the corresponding matrices ,s sP C  are formed from the rows of the matrices aiP  and , = 1, 2aiC i . 
As an example, if we fix the strategy 2s  then we obtain a simple Markov process with transition costs generated 

by the following matrices 2sP  and 2sC :  

 2 2
0.7 0.3 1 0

= , = .
0.5 0.5 2 3

s sP C⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

It easy to check that this Markov process is ergodic and the limit matrix of this process is  

 2
5 8 3 8

= .
5 8 3 8

sQ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The components of the vector of immediate costs 
2

2

2

1

2

=
s

s
s

μ
μ

μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 we can determine using formula 

2 2 2 2 2

,1 ,1 ,2 ,2= , = 1, 2,s s s s s
i i i i ip c p c iμ +  i.e. 2

1 = 0.7sμ  and 2

2 = 0.5sμ . In such a way we determine 

1 2 2 2( ) = ( ) =1 4f s f s . Analogically can be calculated 1 1 2 1( ) = ( ) = 22 30f s f s , 1 3 2 3( ) = ( ) =f s f s  16 10=  
and 1 4 2 4( ) = ( ) = 9 11f s f s . We can see that the optimal stationary strategy for the Markov decision 

problem with minimial average cost criterion is 2s . This strategy can be found by solving the following 
linear programming problem on auxiliary network 1 2( , , , , )G X X p c′ ′ ′ ′ ′ : 

Minimize  
 1,1 1,2 2,1 2,2( , ) = 0.7 2.4 0.8 0.5q q q q qψ α + + −  

subject to  

 

1,1 1,2 2,1 2,2 1

1,1 1,2 2,1 2,2 2

1,(1,1) 1,1

1,(1,2) 1,2

2,(2,1) 2,1

2,(2,2) 2,2

1,1 1,2 2,1 2,2 1 2

1,(1,1) 1,(1,2) 2,(2,1) 2,(2,2)

1,1 1,

0.7 0.4 0.6 0.5 = ,
0.3 0.6 0.4 0.5 = ,

= ,

= ,

= ,

= ,

= 1,
, , , 0,

,

q q q q q
q q q q q

q

q

q

q

q q q q q q

q q

α

α

α

α

α α α α

+ + +

+ + +

+ + + + +

≥

2 2,1 2,2 1 2, , , , 0.q q q q

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪

≥⎪⎩

 

The optimal solution of this problem is  
 * * * * * *

1 2 1,1 2,2 1,2 2,1= 5 8, = 3 8, = 5 8, = 3 8, = 0, = 0,q q q q q q  

  * * * *
1,(1,1) 2,(2,2) 1,(1,2) 2,(2,1)= 5 8, = 3 8, = 0, = 0.α α α α  
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The optimal value of the objective function is * *( , ) = 1 4qψ α . 
We can find the optimal strategy on G′ :  
 * * * *

1,(1,1) 1,(1,2) 2,(2,1) 2,(2,2)= 1, = 0, = 0, = 1.s s s s  
This mean that the optimal stationary strategy for Markov decision problem is 
 *

1 2:1 , 2s a a→ →  

and the average cost per transition is * *
1 2( ) = ( ) = 1 4f s f s . 

The auxiliary graph with distinguished optimal strategies in the controllable 
states 1 = 1x  and 2 = 2x  is represented on fig. 3. The unique outgoing directed 
edge (1, (1,1))  from vertex 1 that end in vertex (1,1)  corresponds to the 
optimal strategy 11 a→  in the state = 1x  and the unique outgoing directed 
edge 2, (2,2)  from vertex 2  that end in vertex (2,2)  corresponds to the 
optimal strategy 22 a→  in the state = 2x . 

3. Linear Programming Approach for Average Markov Decision Problem and Algorithm for 
Determining the Optimal Strategies 

In previous section we have shown that the optimal stationary strategies for Markov decision processes 
can be found by constructing an auxiliary stochastic control problem and applying the linear programming 
algorithm for the control problem on an auxiliary network. Below we show how to apply linear programming 
algorithm directly to Markov decision problem with average cost optimization criterion without construction 
the auxiliary stochastic control problem. 

At first we describe the linear programming algorithm for a special class of Markov decision processes. 
We consider Markov decision processes with the property that an arbitrary stationary strategy :s X A→  
generate a recurrent Markov chain, i.e. we assume that the graph = ( , )s sGR X GE  of the matrix of probability 

transition ,= ( )s s
x yP p  is strongly connected. In general we can see that the linear programming approach 

can be used for an arbitrary Markov decision problems where an arbitrary stationary strategy generates a 
unichain. Such Markov decision processes we call perfect Markov decision processes. It is easy to observe 
that if for an arbitrary strategy :s A X→  in the Markov decision process each row of the matrix ,= ( )s

x yP p  

contains at least 2 1X⎡ ⎤ +⎣ ⎦  nonzero elements then Markov decision process is perfect, i.e. the corresponding 

graph = ( , )s sGR X ER  is strongly connected. 
Let :s X A→  be an arbitrary strategy ( )s S∈  for Markov decision process. Then for every fixed x X∈  

we have a unique action = ( ) ( )a s x A x∈  and therefore we can identify the map s  with the set of boolean 
values ,x as  for x X∈  and  ( )a A x∈ , where  

 ,

1, = ( ),
=

0, ( ).x a

if a s x
s

if a s x
⎧
⎨ ≠⎩

 

In a similar way for the optimal stationary strategy *s  we shall with the boolean values *
,x as . 

Assume that the Markov decision process is perfect. Then the following lemma holds.  
Lemma 1. A stationary strategy *s  is optimal if and only if it corresponds to an optimal solution of the 

following mixed integer bilinear programming problem: 
Minimize  
 , ,

( )

( , ) = x a x a x
x X a A x

s q s qψ μ
∈ ∈
∑ ∑  (1) 

Fig.3 
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subject to  

 

, ,
( )

,
( )

,

= , ;

= 1;

= 1, ;

{0,1}, , ( ); 0, ,

a
x y x a x y

x X a A x

x
x X

x a
a A x

x a x

p s q q y X

q

s x X

s x X a A x q x X

∈ ∈

∈

∈

⎧ ∀ ∈
⎪
⎪
⎪
⎨

∀ ∈⎪
⎪
⎪ ∈ ∀ ∈ ∈ ≥ ∀ ∈⎩

∑ ∑

∑
∑

 (2) 

where , , ,= a a
x a x y x y

y X

c pμ
∈
∑  is the immediate cost in the state x X∈  for a fixed action ( )a A x∈ . 

Proof. For a fixed strategy s  the system (2) has a unique solution with respect ,xq x X∈  which represents the 

limiting probabilities of the recurrent Markov chains with the matrix of probability transition sP . The value 
objective function (1) for this solution expresses the average cost per transition for an arbitrary fixed starting 
state. Therefore for fixed strategy s  we have ( ) = ( , ), .s

xf s s q x Xψ ∀ ∈  This means that if we solve the 
optimization problem (1), (2) for the perfect Markov decision process then we obtain the optimal stationary 
strategy *s . 

Remark 1. For the perfect Markov decision processes the objective function ( , )s qψ  on the set of feasible 
solution depend only on ,x as  for , ( )x X a A x∈ ∈ . Moreover the conditions 0xq ≥  for x X∈  in (2) holds 

if , 0, , ( )x as x X a A x≥ ∀ ∈ ∈  and therefore in the case of perfect Markov processes can be omitted. The 

conditions 0,xq x X≥ ∀ ∈  in (2) are essential for non perfect Markov processes.  
Based on Lemma 1 we can prove the following result.  
Theorem 1. Let *

,x yα  *
1( , ), xx X y X q∈ ∈  ( )x X∈  be a basic optimal solution of the following linear 

programming problem: 
Minimize  
 , ,

( )
( , ) = x a x a

x X a A x
qψ α μ α

∈ ∈
∑ ∑  (3) 

subject to  

 

, ,
( )

,
( )

,

= , ,

= 1,

= , ,

0, , ( ); 0, ,

a
x y x a y

x X a A x

x
x X

x a x
a A x

x a x

p q y X

q

q x X

x X a A x q x X

α

α

α

∈ ∈

∈

∈

⎧ ∀ ∈
⎪
⎪
⎪
⎨

∀ ∈⎪
⎪
⎪ ≥ ∀ ∈ ∈ ≥ ∀ ∈⎩

∑ ∑

∑
∑

 (4) 

where , , ,= .a a
x a x y x y

y X
c p for x Xμ

∈

∈∑  Then the optimal stationary strategy *s  for perfect Markov process 

can be found as follows:  

 
*
,*

, *
,

1, > 0,
=

0, = 0,
x a

x a
x a

if
s

if
α
α

⎧⎪
⎨
⎪⎩

 

where , ( )x X a A x∈ ∈ . Moreover, for every starting state x X∈  the optimal average cost per transition is 
equal to * *( , )qψ α , i.e. * *

, ,
( )

( ) =x x a x a
x X a A x

f s μ α
∈ ∈
∑ ∑   for every x X∈ . 
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Proof. We show that the bilinear programming problem (1), (2) with boolean variables ,x as  for 1, ( )x X a A x∈ ∈  

can be reduced to the linear programming problem (3), (4). We observe that the restriction , {0,1}x as ∈  in 

problems (1), (2) can be changed by , 0x as ≥  because the optimal basic solutions after such a transformation 
of the problem are not changed. In addition the restrictions  

 
,

( )
= 1,x a

a A x
s x X

∈

∀ ∈∑ , 

can be changed by the restrictions 
,

( )
= ,x y x x

a A x
s q q x X

∈

∀ ∈∑  because for the perfect Markov process holds 

> 0,xq x X∀ ∈ . This means that the system (2) in the problem (1), (2) can be changed by the following 
system  

 

, ,
( )

,
( )

,

= , ,

= 1,

= , ,

0, , ( ); 0, .

a
x y x a x y

x X a A x

x
x X

x a x x
a A x

x a x

p s q q y X

q

s q q x X

s x X a A x q x X

∈ ∈

∈

∈

⎧ ∀ ∈
⎪
⎪
⎪
⎨

∀ ∈⎪
⎪
⎪ ≥ ∀ ∈ ∈ ≥ ∀ ∈⎩

∑ ∑

∑
∑

 (5) 

In a such way we may conclude that problem (1), (2) and problem (1), (5) have the same optimal solutions. 
Taking into account that for the perfect network > 0,xq x X∀ ∈  we can introduce in problem (1), (5) the 
notations , ,=x a x a xs qα  for , ( )x X a A x∈ ∈ . In a such way we obtain the problem (3), (4). It is evident that 

, 0x aα ≠  if and only if , = 1x ys . Therefore the optimal stationary strategy *s  can be found according to the 
rule formulated in the theorem. 

So, if the Markov decision process is perfect then the optimal stationary strategy *s  can be found using 
the algorithm described below. It easy to observe that xq  in the system (4) can be eliminated if we take into 

account that ,
( )

= , .x a x
a A x

q x Xα
∈

∀ ∈∑  Then Theorem 1 we can formulate in the following way. 

Theorem 2. Let *
,x yα  ( , )x X y X∈ ∈  be a basic optimal solution of the following linear programming 

problem: 
Minimize  
 , ,

( )
( ) = x a x a

x X a A x
ψ α μ α

∈ ∈
∑ ∑  (6) 

subject to  

 

, , ,
( ) ( )

,
( )

,

= 0, ,

= 1,

0, , ( ).

a
x y x a y a

x X a A x a A y

x a
x X a A x

x a

p y X

x X a A x

α α

α

α

∈ ∈ ∈

∈ ∈

⎧ − ∀ ∈
⎪
⎪
⎨
⎪
⎪ ≥ ∀ ∈ ∈⎩

∑ ∑ ∑

∑ ∑  (7) 

Then the optimal stationary strategy *s  for perfect Markov process can be found as follows:  

 
*
,*

, *
,

1, > 0,
=

0, = 0,
x a

x a
x a

if
s

if
α
α

⎧⎪
⎨
⎪⎩

 

where , ( )x X a A x∈ ∈ . Moreover, for every starting state x X∈  the optimal average cost per transition is 
equal to ( , )qψ α∗ ∗ , i.e. * *

, ,
( )

( ) =x x a x a
x X a A x

f s μ α
∈ ∈
∑ ∑   for every x X∈ . 

Thus, the optimal stationary strategy for Markov decision problem can be found using the following 
algorithm [4, 5]. 



Seria “{tiin\e exacte [i economice” 
Matematic= ISSN 1857-2073 
 

 31

Algorithm. Determining the Optimal Stationary Strategies for Perfect Markov Decision Problem  
1) Form the linear programming problem (3), (4) and find a basic optimal solution * *

, ,x y xqα  of this 
problem;  

2) Fix *
, = 1x as  for ( , )x a  that corresponds to the basic components of the optimal solution.  

Example. Consider the Markov decision problem with average cost criterion from section 2. The 
corresponding multigraph of the Markov decision process is represented on fig. 1. The optimal stationary 
strategy *s  of this problem can be found by solving the linear programming problem (3), (4), i.e.: 

Minimize  
 1,1 1,2 2,1 2,2( , ) = 0.7 2.4 0.8 0.5qψ α α α α α+ + −  

subject to 

 

1,1 2,1 1,2 2,2 1

1,1 2,1 1,2 2,2 2

1 2

1,1 1,2 1

2,1 2,2 2

1,1 1,2 2,1 2,2 1 2

0.7 0.6 0.4 0.5 = ,
0.3 0.4 0.6 0.5 = ,

= 1,
= ,
= ,

, , , 0, , 0.

q
q

q q
q
q

q q

α α α α

α α α α

α α

α α

α α α α

+ + +⎧
⎪ + + +⎪
⎪ +⎪
⎨ +⎪
⎪ +
⎪

≥ ≥⎪⎩

 

The optimal solution of this problem is 
 * * * * * *

1 2 1,1 2,2 1,2 2,1= 5 8, = 3 8, = 5 8, = 3 5, = 0, = 0q q α α α α  

and the corresponding average cost is equal to 1 4 , i.e. * *( , ) = 1 4qψ α . 
The optimal solution of the problem corresponds to the optimal stationary strategy 

* * * *
1,1 1,2 2,1 2,2= 1, = 0, = 0, = 1s s s s  i.e. *

1 2:1 , 2 .s a a→ →  So, optimal stationary strategy *s  determine 

the Markov process with the following probability and cost matrices * *0.7 0.3 1 0
= , = .

0.5 0.5 2 3
s sP C

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

The graph of transition probabilities of this Markov process is represented on fig. 4. 
 

 
 
 
 
 
 
 
 
 

The result described above shows that the Markov decision problem with average cost criterion can be 
transformed into a stochastic optimal control problem on auxiliary network 1 2 0

( , , , , , )iG X X p c x′ ′ ′ . This 

means that the linear programming algorithm can be developed and specified for Markov decision problems 
with average and discounted costs optimization criteria. 
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