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Sunt clasi�cate sistemele cubice cu exact şase drepte invariante de dou¼a direçtii ţinându-se cont la enumerare
de gradul lor de invarianţ¼a. Se arat¼a c¼a, din punct de vedere topologic, sunt 11 clase distincte de astfel de sisteme.
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1 Introduction

We consider the real polynomial system of di¤erential equations

dx

dt
= P (x; y);

dy

dt
= Q(x; y); (1)

where P; Q 2 R[x; y], and the polynomial vector �eld

X = P (x; y)
@

@x
+Q(x; y)

@

@y
(2)

corresponding to system (1).
Denote n = maxfdeg(P ); deg(Q)g. If n = 2 (n = 3) then system (1) is called quadratic (cubic).
The function f : D � R2 ! C; f 6= const, is said to be an elementary invariant (or a Darboux

invariant) for (2) if there exists a polynomial Kf 2 C[x; y], deg(Kf ) � n� 1 such that the identity

X(f) � f(x; y)Kf (x; y)

holds. The polynomial Kf is called the cofactor of f . Denote by IX the set of all elementary invariants
of (2); Ia = ff 2 C[x; y] j f 2 IXg; Ie = fexp( gh) j g; h 2 C[x; y]; GCD(g; h) = 1; exp(

g
h) 2 IXg. The

elements from Ia (Ie) are called algebraic invariants (exponential invariants) of (2). In [1] it is shown
that if f = exp(g=h) 2 Ie; h 6= const, then h 2 Ia and X(f) = gKh + hKf .

Let f 2 C[x; y] and f = fn11 � � � fnss be its factorization in irreducible factors over C[x; y]. Then
f 2 Ia if and only if fj 2 Ia; j = 1; s. Moreover, Kf = n1Kf1 + � � � + nsKfs . If fj 2 Ia

S
Ie; �j 2

C; j = 1; s, then f�11 � � � f�ss 2 IX .
We will say that an algebraic invariant f 2 Ia has the degree of invariance equal to m, if m is

the greatest positive integer such that fm divides X(f). For invariant straight lines ax + by + c =
0; ax+ by + c 2 Ia, such a de�nition was brought in [2]. If f 2 Ia has the degree of invariance equal
to m � 2, then exp(1=f); :::; exp(1=fm�1) 2 Ie.

We say that the system (1) is Darboux integrable if there exists a non-constant function of the form

f = f�11 � � � f�ss ; (3)

where fj 2 Ia
S
Ie and �j 2 C; j = 1; s, such that either f = const is a �rst integral (i.e. Kf � 0) or

f is an integrating factor (i.e. Kf � �@P
@x �

@Q
@y ) for (1). It can be shown that (3) is a �rst integral

(an integrating factor) for (1) if and only if

�1Kf1(x; y) + � � �+ �sKfs(x; y) � 0
(�1Kf1(x; y) + � � �+ �sKfs(x; y) � �@P

@x �
@Q
@y ):
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The purpose of this paper is to present the begining of qualitative investigation of the cubic system
with six invariant straight lines.

Although the straight lines are the most simple representatives in the class of algebraic curves, the
study of the di¤erential equations with invariant straight lines is far from completion. It has attracted
the attention of many researches and at present there are a lot of papers devoted to this subject. So,
in [3-7] for di¤erent classes of polynomial systems conditions for the existence of invariant straight
lines are obtained.

A set of invariant straight lines can be in�nite, �nite or empty. Systems with in�nite number of
invariant straight lines will not be considered.

In papers [8-14] the estimation for the number of invariant straight lines is given. Denote by �(n)
the maximum number of the invariant straight lines and by �(n) the maximum number of slopes of
this lines in the class of n-polynomial di¤erential systems. In [8] it is shown that �(2) = 5; in [9,10] -
�(3) = 8; in [10,11,12] - �(4) = 9; in [13] - �(5) = 14 and that 2n+1+ 1�(�1)n

2 � �(n) � 3n�1; n > 5;
in [14] - �(3) = 6; �(4) = 9 and in [15] - �(n) = �(n� 1) + 1.

The problem of coexistence of invariant straight lines and limit cycles were investigated in [16-25].
As follows from [16-21], a quadratic system with at least two invariant straight lines has no limit cycles
and with one invariant straight line can have at most one limit cycle. A cubic system with at least
�ve real invariant straight lines has no limit cycles [21,22]. The same system with four real or with
two real and two complex conjugate invariant straight lines can have at most one limit cycle [23-25].
A cubic system with four complex conjugate invariant straight lines can have two limit cycles [25],
examples with more than two limit cycles are not known.

The problem of the center for cubic di¤erential systems with four and three invariant straight lines
is investigated in [2,26-29]. According to [2] ([26-29]) the cubic di¤erential system with a weak focus
at (0; 0) and at least four (three) invariant straight lines has a center at the origin of coordinates if
and only if the �rst two (seven) focal values vanish.

A qualitative investigation of cubic systems with exactly eight and exactly seven invariant straight
lines was carried out in [9,30,31]. In this paper a similar qualitative investigation is done for cubic
di¤erential systems with exactly six real invariant straight lines along two directions.

The main obtained results are shown in the following theorem:

Theorem. Any cubic system having real invariant straight lines along two directions with total
degree of invariance six via a¢ ne transformation and time rescaling can be written as one of the
following eight systems. In the �gure associated to each system is presented the phase portrait in the
Poincaré disc.8<:

_x = x(x+ 1)(x� a); a > 0;
_y = �y(y + 1)(y � b); b > 0; F ig:1(� < 0);
�(j� � 1j+ jb� aj)(j� � a2j+ jb� 1

a j) 6= 0; F ig:2(� > 0);
(4)

�
_x = x2(x+ 1); F ig:3(� < 0);
_y = �y(y + 1)(y � b); bj�j > 0; F ig:4(� > 0);

(5)�
_x = x3;
_y = �y(y + 1)(y � b); b > 0; F ig:5;

(6)�
_x = x3;
_y = y(y + 1)(y � b); b > 0; F ig:6;

(7)�
_x = x2(x+ 1); F ig:7(� < 0);
_y = �y2(y + 1); �(� � 1) 6= 0; F ig:8(� > 0);

(8)
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�
_x = x3;
_y = �y2(y + 1); F ig:9;

(9)�
_x = x3;
_y = y2(y + 1); F ig:10;

(10)�
_x = x3;
_y = �y3: F ig:11:

(11)

Fig.1 Fig.2 Fig.3

Fig.4 Fig.5 Fig.6
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Fig.7 Fig.8 Fig.9

Fig.10 Fig.11

2 Preliminaries
We consider the real cubic di¤erential system

dx

dt
=

3X
r=0

Pr(x; y);
dy

dt
=

3X
r=0

Qr(x; y); (12)

where Pr(x; y) =
P

j+l=r

ajlx
jyl; Qr(x; y) =

P
j+l=r

bjlx
jyl. Assume that the members from the right-

hand side of system (12) have not a non-constant common factor.
We mention here some properties of system (12):
a) in the �nite part of the phase plane system (12) has at most nine singular points;
b) at in�nity the system (12) has at most four singular points if yP3(x; y)�xQ3(x; y) 6� 0. In case

yP3(x; y)� xQ3(x; y) � 0 the in�nity is degenerate, i.e. consists only from singular points;
c) the system (12) has in the �nite part of the plane not more than eight invariant straight lines;
d) the in�nite line represents an invariant straight line for (12);
e) the system (12) has invariant straight lines along at most six di¤erent directions;
f) the system (12) cannot have more than three parallel invariant straight lines.
Let ajx + bjy + cj = 0; j = 1; 2; a1b2 � a2b1 6= 0 be two real invariant straight lines of system

(12). The transformation x1 = a1x + b1y + c1; y1 = a2x + b2y + c2 reduces (12) to a system of the
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Lotka-Volterra form (we keep the old notations for variables)�
_x = x(a10 + a20x+ a11y + a30x

2 + a21xy + a12y
2);

_y = y(b01 + b11x+ b02y + b21x
2 + b12xy + b03y

2):
(13)

The property f) says that every cubic system with at least four real invariant straight lines can be
written in the form (13).

A straight line y = Ax + B; A 6= 0 is invariant for system (13) if and only if A and B are the
solutions of the system:

B(b01 + b02B + b03B
2) = 0;

b11B + b12B
2 + [b01 � a10 + (2b02 � a11)B + (3b03 � a12)B2] �A = 0;

b21B + [b11 � a20 + (2b12 � a21)B] �A+ [b02 � a11 + (3b03 � 2a12)B] �A2 = 0;
b21 � a30 + (b12 � a21) �A+ (b03 � a12) �A2 = 0:

(14)

The cofactor of this line is

K(x; y) = c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2;

where

c00 = b01 + b02B + b03B
2; c10 = b11 + b12B + (b02 � a11)A+ (2b03 � a12)AB; c01 = b02 + b03B;

c20 = b21 + (b12 � a21)A+ (b03 � a12)A2; c11 = b12 + (b03 � a12)A; c02 = b03:

3 Canonical forms and Darboux integrability

There are the following con�gurations of six invariant straight along two directions:

1) (3; 3); F ig: 12a); 2) (3(2); 3); F ig: 12b); 3) (3(3); 3); F ig: 12c);

4) (3(2); 3(2)); F ig: 12d); 5) (3(3); 3(2)); F ig: 12e); 6) (3(3); 3(3)); F ig: 12f):

Notation (3(2); 3) means that along of one direction there are two distinct straight lines from which
one is double (i.e. has degree of invariance equal to two), and along of the second direction there are
three distinct invariant straight lines; (3(3); 3(2)) means that along of one direction the di¤erential
system has one triple invariant straight line, and along of the second direction there are two distinct
invariant straight lines from which one is double and so on.

If an invariant straight line has multiplicity m > 1, then the number m appears near the corres-
ponding straight line and this line is more thick.

Fig.12
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The cubic systems that realize con�gurations 1)� 6) via a¢ ne transformations and time rescaling
can be written in the following form, respectively:�

_x = x(x+ 1)(x� a); a > 0;
_y = �y(y + 1)(y � b); b > 0; � 6= 0; (15)

�
_x = x2(x+ 1);
_y = �y(y + 1)(y � b); b > 0; � 6= 0; (16)�
_x = x3;
_y = �y(y + 1)(y � b); b > 0; � 6= 0; (17)�

_x = x2(x+ 1);
_y = �y2(y + 1); � 6= 0; (18)�
_x = x3;
_y = �y2(y + 1); � 6= 0; (19)�

_x = x3;
_y = �y3; � 6= 0: (20)

The systems (15)-(20) are Darboux integrable and have respectively �rst integrals:

[x1=a(x+ 1)�1=(a+1)(x� a)�1=(a(a+1))]�b(b+1)y�b�1(y + 1)b(y � b) = C;

[x(x+ 1)�1exp(1=x)]�b(b+1)y�b�1(y + 1)b(y � b) = C;

y�2(b+1)(y + 1)2b(y � b)2exp(�b(b+ 1)=x2) = C;

x�1(x+ 1)�y(y + 1)�1exp(��=x)exp(1=y) = C;

y�2(y + 1)2exp(�=x2)exp(�2=y) = C;

x�2y�2(�y2 � x2) = C:

To emphasize the cases when (15)-(20) contain more than six invariant straight lines we use the
algebraic systems of equation (14). Thus, writing system (14) in condition (15) and solving it for A
and B, we obtain that (15) has exactly seven invariant straight lines if and only if one of the following
two series of conditions hold � � 1 = b � a = 0; a 6= 1 and � � a2 = b � 1

a ; a 6= 1, that is, when (15)
has one of the forms: �

_x = x(x+ 1)(x� a);
_y = y(y + 1)(y � a); a > 0; a 6= 1; (21)�
_x = x(x+ 1)(x� a);
_y = a2y(y + 1)(y � 1

a); a > 0; a 6= 1:
(22)

For (21) ((22)) the invariant straight lines lj = 0; j = 1; 7 are

l1 = x, l2 = x+ 1, l3 = x� a, l4 = y, l5 = y + 1, l6 = y � a (l6 = y � 1
a); l7 = y � x (l7 = y +

1
ax):
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We mention that system (22) can be reduced to system (21) by substitution x! x; y ! �y=a.
The system (15) has eight invariant straight lines if and only if � = a = b = 1, that is when it has

the form �
_x = x(x+ 1)(x� 1);
_y = y(y + 1)(y � 1):

The invariant straight lines are:

l1 = x; l2;3 = x� 1; l4 = y; l5;6 = y � 1; l7;8 = y � x:

Now it becomes clear why in (4) the condition (j�� 1j+ jb� aj)(j�� a2j+ jb� 1
a j) 6= 0 is imposed.

The equalities (14) show us that systems (16)�(19) cannot have eight invariant straight lines and
systems (16), (17), (19) and (20) cannot have exactly seven invariant straight lines.

The system (18) has exactly seven invariant straight lines if and only if � = 1, i.e.�
_x = x2(x+ 1);
_y = y2(y + 1):

The invariant straight lines are

l1 = l2 = x; l3 = x+ 1; l4 = l5 = y; l6 = y + 1; l7 = y � x:

The system (20) has eight invariant straight lines if and only if � > 0. In this case substitutions
x!

p
�x; y ! y; t! t=� reduce (20) to a system

_x = x3; _y = y3;

with l1;2;3 = x; l4;5;6 = y; l7;8 = y � x: If � < 0, then substitutions x !
p
��x; y ! y; t ! �t=�

reduce (20) to a system (11).
By the some substitutions the system (17) can be reduced to one of systems (6), (7).

4 The phase portraits

We denote by SP � singular points; �1 and �2 the eigenvalues of SP ; S � saddle (�1�2 < 0), TS
� topological saddle; N s � stable node (�1; �2 < 0), Nu � unstable node (�1; �2 > 0), DN s(u) �
stable (unstable) dicritical node (�1 = �2 6= 0), TN s(u) � stable (unstable) topological node; S-N s(u)

� saddle-node with stable (unstable) parabolic sector; P s(u) � stable (unstable) parabolic sector; H
� hyperbolic sector.

4.1 In�nity

In case of systems (7) and (10) ((6), (9) and (11)) it is convenient to consider � = 1 (respectively
� = �1). Then systems (4)�(11) for which � < 0 have at the in�nity only two real singular points,
and for � > 0 have four such points. Singular points, with eigenvalues and their type are given in
Tab.1.

Tab.1
SP �1; �2 � < 0 � > 0

(1; 0; 0) �1; �1 DN s DN s

(0; 1; 0) ��; �� DNu DN s

(1;� 1p
�
; 0) �1; 2 � S

(1; 1p
�
; 0) �1; 2 � S

Fig:13a) Fig:13b)
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Fig:13 a) for � < 0, b) for � > 0.

4.2 System (4)

For system (4) the results of qualitative investigation of singular points in the �nite part of the
phase plane are given in Tab.2.

Tab.2
SP �1; �2 � < 0 � > 0

(0; 0) �a; ��b S N s

(0; b) �a; �b(b+ 1) N s S

(�1; b) a+ 1; �b(b+ 1) S Nu

(�1; 0) a+ 1; ��b Nu S

(�1;�1) a+ 1; �(b+ 1) S Nu

(0;�1) �a; �(b+ 1) N s S

(a;�1) a(a+ 1); �(b+ 1) S Nu

(a; 0) a(a+ 1); ��b Nu S

(a; b) a(a+ 1); �b(b+ 1) S Nu

Fig:1 Fig:2

4.3 System (5)

For system (5) the results of qualitative investigation of singular points in the �nite part of the
phase plane are given in Tab.3.

Tab.3
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SP �1; �2 � < 0 � > 0

(0; 0) 0; ��b S-Nu S-N s

(0; b) 0; �b(b+ 1) S-N s S-Nu

(�1; b) 1; �b(b+ 1) S Nu

(�1; 0) 1; ��b Nu S

(�1;�1) 1; �(b+ 1) S Nu

(0;�1) 0; �(b+ 1) S-N s S-Nu

Fig:3 Fig:4

To establish the type of singular points with �1 = 0 we used the theorem 2, p.87 from [32].

4.4 Systems (6) and (7)

For system (6) ((7)) we have Tab.4.

Tab.4
SP �1; �2 (6); � = �1 (7); � = 1

(0; 0) 0; ��b TNu TS

(0; b) 0; �b(b+ 1) TS TNu

(0;�1) 0; �(b+ 1) TS TNu

Fig:5 Fig:6

4.5 System (8):

Tab.5
SP �1; �2 � < 0 � > 0 SP �1; �2 � < 0 � > 0

(0; 0) 0; 0 HP sHP u P uHP sH (�1;�1) 1; � S Nu

(�1; 0) 1; 0 S-Nu S-Nu (0;�1) 0; � S-N s S-Nu

� < 0 : Fig:7; � > 0 : Fig:8

For system (8) a singular point (0; 0) has both eigenvalues null. To determine the behavior of
trajectories in the neighborhood of (0; 0), we write (8) in the polar coordinates x = �cos�; y = �sin�:(

d�
d� = �(�cos

4� + ��sin4� + cos3� + �sin3�);

d�
d� = sin�cos�(��sin

2� � �cos2� + �sin� � cos�);
(23)

where � = �t. System (23) has the following singular points with the �rst coordinate � equal to zero
and the second one belonging to [0; 2�]: M1(0; 0), M2(0; �), M3(0; �=2), M4(0; 3�=2), M5(0; arctan

1
� )

and M6(0; � + arctan
1
� ). For M1 and M2 we have �1;2 = �1; for M3 and M4: �1;2 = ��; for M5:

�1 = �2 = �=
p
1 + �2 and for M6: �1 = �2 = ��=

p
1 + �2 (Fig:14; 15):
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Fig:14 (� < 0)

Fig:15 (� > 0)

4.6 Systems (9) and (10) (Fig: 9; 10)

We consider the system (19) in which � = �1 or � = 1. This system is symmetric with respect
to the y-axis. It has singular points (0; 0) and (0;�1). Using theorem 2, p.87 from [32] it is easily
determined that (0;�1) is a saddle if � < 0 and it is an unstable nod if � > 0. To establish the
behavior of trajectories in the neighborhood of singular point (0; 0) of (19) we consider x � 0 and
make the substitution X = x2; y = y:

_X = 2X2; _y = �y2(y + 1); X � 0: (24)

In polar coordinates X = �cos�; y = �sin�; ��
2 � � �

�
2 ; � = �t the system (24) we can be writen

in the form (
d�
d� = �(��sin

4� + �sin3� + 2cos3�);

d�
d� = sin�cos�(��sin

2� + �sin� � 2cos�):

The singular point (0; 0) has the eigenvalues �1;2 = �2; (0;��=2) and (0; �=2): �1;2 = ��; (0;�arctan 2� ):
�1;2 =

2j�jp
4+�2

(Fig:16):
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Fig:16 a) for � < 0, b) for � > 0

4.7 System (11)

The given system is symmetric with respect to the origin of coordinates. In polar coordinates it
can be written as _� = �3cos2�; _� = �1

2�
2sin2� and has the �rst integral �sin2� = C: (Fig:(11)):
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