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Un model teoretic care descrie interacţiunea într-o populaţie eterogenă de agenţi a fost dezvoltat şi analizat în cadrul 

discuţiilor recente despre decalajul dintre modelele computaţionale ABM şi modelele analitice stocastice [1]. A fost 
demonstrat că acest model probabilistic descrie exact rezultatul previzibil al simulărilor computaţionale care trebuie să 
fie suficient de lungi pentru a echilibra starea sistemului. Acest rezultat depinde de distribuţia stărilor în sistem şi este 
definit atât cu ajutorul valorii medii, cât şi al coeficientului de variaţie pentru payoff. Ultima mărime este independentă 
de scara valorilor şi denotă cât de inegale sunt distribuţiile în sistem, iar, prin urmare, şi nivelul de eterogenitate al 
modelului nostru stocastic. Rezultatele obţinute sunt raportate pentru valoarea medie şi coeficientul de variaţie pentru 
payoff, calculate pentru modelul prezentat în [1]. În lucrare nu este specificată o formă funcţională particulară pentru a 
evita alegeri arbitrare, în cazul unui sistem format din patruzeci agenţi cu 1221759 distribuţii posibile în şase clustere 
după trei stări diferite.  

 
 

Introduction  
We have recently introduced a theoretical model which describes the interactions in a heterogeneous po-

pulation of agents [1]. In particular, there are N entities which can be in 3 different states (call them Left, Center 
and Right), and can play 3 actions (again Left, Center and Right). Interaction in this agent-based model always 
involves one active and one passive player, but the agents can play both roles interchangeably. They have pre-
ferences over their states: love one state, are neutral with respect to another state and they hate the remaining 
state. If the active player follows the first rule, it always plays the action corresponding to the loved state. If 
it follows the second rule, it randomises between actions corresponding to the loved and neutral states. When 
two agents meet, the active player sets the passive player’s state according to his action, which in turn is deter-
mined by one of the applied rule. This identifies only 6 possible combinations. Denote with probabilities 
p1…p6 the shares of the population characterized by each combination of preferences. That is, drawing ran-
domly one agent, it will be of type i with probability pi. After each interaction, the passive player gets a payoff 
of +1 if it is in the loved state, a payoff of 0 if it is in the neutral state, and a payoff of –1 if it is in the hated 
state. The active player does not get any feedback. Let ∞= ,,2,1 KN  be the total number of entities in the 
model, and {  is their partition into m=6 subsets. Each subset can be called cluster, and 

the process itself – clustering. The size of each cluster can vary from 0 to N, 
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The number of possible partitions P is a function of N, and the solution is 
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The purpose of this paper is to report the results for the mean and the coefficient of variation of the payoffs 
for the model proposed in [1] in the case of a system formed by forty agents with P(N)=1221759 possible parti-
tions into six clusters over three different states, and to prove that even a relatively simple stochastic model can 
describe precisely the expected outcomes from corresponding agent-based computational simulations [2, 3].  

The model 
Consider an active agent of type 1 (loves Left and hates Center) which meets in turn all other (passive) 

agents, including himself. If it follows the first rule, then it will play Left causing a payoff of +1 in (p1+p2)N 
agents, and a payoff of –1 in (p3+p5)N agents. Note that there are (p1+p2)N similar entities in the ensemble. 
Suppose now that everybody meets everybody else both as active and as passive agent. So the average payoff 
when everybody plays according to the first rule is  

))(())(())(( 6542656431435321211 pppppppppppppppppp ++−−++−++−++−−++=π .  (1) 
Similarly, the average payoff with the second rule is  
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To study the behaviour of 21 ππ −  we used to set some of the probabilities to zero [1]. In this paper we 
will not specify a particular functional form in order to avoid arbitrary choices: we represent the distribution 
of states as a single point in a three dimensional space, where the axes are labelled l, c and r. The l coordinate 
is found by counting all agents who love Left, and subtracting all agents who hate Left. The result is then nor-
malized to the size of the population. Similarly for the other two coordinates. Hence, 

l = p1 + p2 – p3 – p5  
c = p3 + p4 – p1 – p6                  (3) 
r = p5 + p6 – p2 – p4

and l + c + r = 0.  
Note that different distributions of states can lead to the same point in the sphere. For instance, the point 

in the origin is given not only by 61621 ==== ppp K , but by any combination of preferences such as 

, , and 31 pp = 52 pp = 64 pp = .  

We can now define the polarization of states as the distance from the center of the sphere:  

                                              222
621 ),,,(),,( crlpppdcrld ++=≡ K .                (4) 

Note that [ ]2,0∈d : all points thus lie inside a sphere around the origin.  
The variances σ2

1 and σ2
2 are defined for each discrete distribution D≡1, 2 with the expectation (mean) 

value πD as follows:  
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where    
43211,1 pppp −−+=π ,  65431,4 pppp −−+=π  

65211,2 pppp −−+=π ,  65211,5 pppp ++−−=π                         (5.1) 

43211,3 pppp ++−−=π ,  65431,6 pppp ++−−=π  
and  

2/)( 65312,1 pppp +−−=π ,  2/)( 64212,4 pppp −++−=π  

2/)( 54322,2 pppp −+−=π ,  2/)( 54322,5 pppp +−+−=π                    (5.2) 

2/)( 65312,3 pppp −++−=π , 2/)( 64212,6 pppp +−−=π  

Since variance is scale-sensitive, it makes little sense to use it as a measure of dispersion when the mean 
values can significantly differ. We, thus, should divide the standard deviation by the mean to obtain the coeffi-
cient of variation, which is scale-free.  

 
Results 
Figure 1 explores how the outcome varies as a function of the distance d. The whole range [0,1] is sam-

pled, for all probabilities p1…p6. The step considered for creating all combinations of probabilities is 0.025, i.e. 
the total number of agents is 40. The average values for 1π  and 2π  are shown in Figure 1a, and for each 
value of the distance from the center of the sphere, d(l,r,c), the frequency of wins with each rule is computed 
(Figure 1b). When 021 >−ππ  a win is assigned to the first rule, and when 021 <−ππ  a win is assigned to 
the second one. Exactly in the center of the sphere the two rules lead to the same payoff, independently of 
the underlying distribution of states. Close to the center, each rule wins in about 50% of the cases. Then, as 
we move away from the center, the first rule improves its performance, and is always better when the states 
are totally polarized. Meanwhile, the total number of states for intermediate values of the distance d is much 
larger than for the dispersed and polarized states.  
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Fig.1. Average values for 1π (upper line) and 2π (a), and relative frequency of negative  

and positive values of 21 ππ −  (b). 

 
Figure 2 shows that for any level of fragmentation of states, the two rules give the same average values of 

the coefficient of variation on the distance d. An interesting result was also reported [2]: on average, however, 
when one rule is better in terms of higher expected payoffs it is also better in terms of lower heterogeneity.  

Conclusions 
The model developed in the paper [1] was used to study agent-based interactions in heterogeneous systems. 

We can conclude that, depending on the underlying distribution of the states, both rules can be optimal. Ho-
wever, as the states become more polarized, i.e. for a less heterogeneous system, the first rule clearly takes 
the lead. For a homogeneous system, i.e. the same preferences, both variances σ2

1 and σ2
2 go to zero. In an 

agent-based computational model, in the case of the first rule, everybody plays the same action and gets the 
same payoff (+1. N, where N is the population size). In the case of second rule, two actions can be played, 
causing either a payoff of +1 or a payoff of 0 to the passive player, at each interaction. However, since every-
body is playing against everybody else, as the system size gets larger everybody finally gets a payoff of 0.5.N. 
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However, the variance in the first case is generally higher than the second one, especially when the states are 
dispersed. Although in general different, the two scale-free coefficients of variations give exactly the same 
value when they depend on the distance d.  
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Fig.2. Average values for the coefficients of variation. 
 
Finally, it is worth to mention that the model is a general one and allows simulations for any size of the 

system. We came here to the choice of forty entities just due to the restriction in computer memory: there are 
over one million values (1221759) for each quantity described in this paper!     
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