• Sprincean V., Untila D., Chirita A., Evtodiev I., Caraman I. (2020) Luminescence of β-Ga₂O₃ Nanoforms Obtained by Oxidation of GaSe Doped with Eu. In: Tiginyanu I., Sontea V., Railean S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_49 The GaSe single crystals were doped with Eu in the process of their synthesis and growth. The oxide of β -Ga₂O₃ doped with Eu in the form of massive nanowires was obtained by thermal treatment (TT) in the atmosphere of GaSe single crystals doped with 1.0 and 3.0 at.% of Eu. The crystalline structure, surface morphology and photoluminescence spectra of GaSe:Eu and β -Ga₂O₃:Eu single crystals were studied. The Photoluminescence (FL) spectrum of GaSe doped with 1.0 at.% of Eu at room temperature is formed as a result of transitions of ${}^5D_0 \rightarrow {}^7F_1$ to Eu³⁺ ion and as a result of radiation annihilation of n = 1 excitons in GaSe. The FL spectra of Ga₂O₃:Eu was interpreted on the basis of the energy level diagram of electrons in Eu³⁺ ion.