THE SPECIAL METRICS OF THE ABSTRACT CUBIC COMPLEX

Sergiu CATARANCIUC

Catedra Informatică şi Optimizare Discretă

Se examinează complexul cubic abstract K^{n} ca un caz particular al G-complexului de relații multi-are [2]. Pentru complexul cubic abstract K^{n} se definește o funcție specială ce posedă proprietăţile metricii.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}, \ldots\right\}$ be a countable set of elements. We form the infinite series of Cartesian products:

$$
X=X^{1}, X^{2}, \ldots, X^{n}, \ldots
$$

where

$$
X^{m+1}=X^{m} \cdot X, \quad m \geq 1
$$

Any non-empty subset $R^{m} \subset X^{m}, \quad m \geq 1$, is called an m-ary relation of the elements from X. We mention that the 1-ary relation $R^{1} \subset X^{1}$ represents a subset of elements from X. Thus, an m-ary R^{m} relation is a family of ordered successions of the following type $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right)$, where $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}$ are elements of X. The elements of the m-ary relation R^{m} will be called corteges. In general, any cortege $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right)$ may contain also repetitions of the elements from X. For a cortege $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right) \in R^{m}$, any subcortege $\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{l}}\right), 1 \leq l \leq m$, that preserves the order of elements in $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right)$, is called hereditary subcortege.

Definition 1. The finite family of relations $\left\{R^{1}, R^{2}, \ldots, R^{n+1}\right\}$ that satisfies the following conditions:
I. $\quad R^{1}=X^{1}=X$,
II. $\quad R^{n+1} \neq \varnothing$,
III. any hereditary subseries $\left(x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{l}}\right), 1 \leq l \leq m \leq n+1$ from $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right) \in R^{m}$ belongs to the l-ary relation R^{l},
IV. for an arbitrary cortege from $R^{m}, 1 \leq m \leq n+1$, the set of all corteges from the family $\left\{R^{m+1}, \ldots, R^{n+1}\right\}$, which have the given cortege as an hereditary subcortege, is a finite set,
is called \mathcal{G}-complex of multi-ary relations and it is denoted by

$$
R^{n+1}=\left\{R^{1}, R^{2}, \ldots, R^{n+1}\right\}
$$

The fundamental definitions related to the examination of a \mathcal{G} complex of multi-ary relations, along with its properties are described in [1,2].

The studying of such objects as the \mathcal{G}-complex of multi-ary relations is of interest by the fact that they generalize a series of classical discrete structures, as graphs, hypergraphs, the abstract simplicial complexes, etc., as well as by the possibility of elaborating efficient methods for solving some important applicative problems.

A particular case of the \mathcal{G} complex of multi-ary relations, which appears in a lot of applicative problems, is the abstract cubic complex. The notion of cubic complex has been denoted for the first time in [4]. Thus, in the Euclidian space E^{n+1}, it is defined the following complex of finite-dimensional unitary cubes:

$$
K^{n}=\left\{I_{\lambda}^{m}: \lambda \in \Lambda, 0 \leq m \leq n\right\},
$$

as well as the series of direct cubic homologies groups $H_{0}\left(K^{n}, \mathbf{Z}\right), H_{1}\left(K^{n}, \mathbf{Z}\right), \ldots, H_{n}\left(K^{n}, \mathbf{Z}\right)$ of K^{n} over the integer field $\mathbf{Z},[3,4]$.

The definition of K^{n} is quite simple:

1) each facet $I^{k} \subset I^{m}, 0 \leq k \leq m \leq n$ is an element of K^{n};
2) for each couple of cubes $I_{\lambda_{1}}^{m_{1}}, I_{\lambda_{2}}^{m_{2}} \in K^{n}$, the $I_{\lambda_{1}}^{m_{1}} \cap I_{\lambda_{2}}^{m_{2}}$ product us null or represents an element from K^{n}.
If the K^{n} complex is connected, then the $H_{0}\left(K^{n}, \mathbf{Z}\right)$ group is isomorphic with the set of integer numbers \mathbf{Z} :

$$
H_{0}\left(K^{n}, \mathbf{Z}\right) \cong \mathbf{Z}
$$

We will consider that for K^{n} are hold the following relations:

$$
H_{0}\left(K^{n}, \mathbf{Z}\right) \cong \mathbf{Z}, H_{1}\left(K^{n}, \mathbf{Z}\right) \cong H_{2}\left(K^{n}, \mathbf{Z}\right) \cong \ldots \cong H_{n}\left(K^{n}, \mathbf{Z}\right) \cong 0
$$

Under these conditions, the complex $火^{n}$ is called acyclic complex.
Next, we will consider that K^{n} is a non-oriented finite abstract cubic complex, formed by m-dimensional cubes $I^{m}, 0 \leq m \leq n$, and that contains at least one n-dimensional cube I^{n}. In this case we say that the complex K^{n} is n-dimensional. Evidently, some of the m-dimensional cubes from K^{n} are subcubes of the cubes with a greater dimension in K^{n}. Geometrically, in the linear space R^{n} over the real field \mathbf{R}, the m-dimensional cubes of which it is formed the $K^{n} \mathcal{G}$ complex can be interpreted as follows:

It is denoted by ${ }^{m}$ the family of all the m-dimensional cubes from K^{n} :

$$
{ }^{m}=\left\{I^{m}: I^{m} \in K^{n}\right\}, 0 \leq m \leq n .
$$

Definition 2: It is called a frontier of the cubic Gcompl K^{n}, the set of all $(n-1)$-dimensional cubes that belong to at most one n-dimensional cube, denoted by $b d^{n-1} K^{n}$.

So, the 2-dimensional frontier of an abstract 3-dimensional cube I^{3} is formed by all the 2-dimensional facets of this cube, and topologically frames an abstract 2-dimensional sphere. If K^{β} is consisted of two 3-dimensional cubes with a single common vertex, then $b d^{n-1} K^{n}$ topologically represents two abstract 2-dimensional spheres with a common point.

Let now I^{n} be an n-dimensional cube, and $V I^{n}$ its vacuum (the vacuum definition can be found in [4]). We mention that by definition $V I^{0}=I^{0}$.

Definition 3: The union of vacuums of all the abstract cubes in the Gcomplex K^{n}, that do not belong to the frontier $b d^{n-1} K^{n}$ is called the interior of the Gcomplex K^{n}, denoted by int $t^{n} K^{n}$.

Let $=\bigcup_{m=0}^{n}{ }^{m}$ be the family of all the cubes in K^{n}. We denote by ${ }_{o} \subset$ the family of all the m-dimensional cubes from K^{n} that don't belong to this ones' frontier. Thus:

$$
\text { int } K^{n}=\bigcup_{I^{m} \in Q_{0}} V I^{m}
$$

We will examine forwards the abstract cubic G_{G} complex K^{n}, connected and acyclic, with the following properties:

1) if $I^{0} \in$ int $^{n} \mathcal{K}^{n}$, then I^{0} belongs to at least $2^{n} n$-dimensional cubes;
2) if $I^{0} \in b d^{n-1} K^{n}$, and belongs to at least $2 n$-dimensional I^{n} cubes from K^{n}, then I^{0} belongs to a number not less than $n+1$ of $(n-1)$-dimensional cubes.
Let ${ }_{1},{ }_{2}, \ldots,{ }_{m}$ be the classes of parallel edges of the abstract cubic complex K^{n}. We choose two arbitrary elements: $I_{p}^{0}, I_{q}^{0} \in{ }^{0}$. We mention that the ${ }^{0}$ set can be considered as the set of vertices of the graph from the 1-dimensional skeleton of $s k l K^{n}$.

It will be denoted by \mathcal{L}^{1} the set of all the linear chains of the \mathcal{K}^{1} subcomplex, which is in fact the $1-$ dimensional skeleton of the abstract cubic complex \mathcal{K}^{n}. We define the function $d: \mathcal{L}^{l} \rightarrow \mathrm{R}^{+}$on \mathcal{L}^{1}, so that, if the chain $L^{1} \in \mathcal{L}^{1}$, then

$$
\begin{equation*}
d\left(L^{1}\right)=\sum_{k=1}^{m} \varepsilon_{k} d_{k} \tag{1}
\end{equation*}
$$

Where $d_{k} \in \mathrm{R}^{+}$represents the weight of the parallel edges class, ${ }_{k}, k=\overline{1, m}$, and

$$
\varepsilon_{k}=\left\{\begin{array}{l}
0, \text { if the } L^{1} \text { chain intersects the } C_{k} \text { class an even number of times } \\
1, \text { if the } L^{1} \text { chain intersects the } C_{k} \text { class an uneven number of times. }
\end{array}\right.
$$

(in the case when L^{1} doesn't contain edges from ${ }_{k}$ it will be considered that the number of intersections with this particular class is even). If $I_{p}^{0}, I_{q}^{0} \in \quad{ }^{0}$ are extremities of the $L^{1}=L^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ then it will be used the following notation:

$$
d_{L^{1}}\left(I_{p}^{0}, I_{q}^{0}\right)=d\left(L^{1}\right)=\sum_{k=1}^{m} \varepsilon_{k} d_{k}
$$

The $d\left(L^{1}\right)$ number will be called the length of the $L^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ chain.
Theorem 1: If $L_{1}^{1}\left(I_{p}^{0}, I_{q}^{0}\right), L_{2}^{1}\left(I_{p}^{0}, I_{q}^{0}\right) \in \mathcal{L}^{1}$ are two distinct linear chains that connect the vertices $I_{p}^{0}, I_{q}^{0} \in \quad{ }^{0}$, then:

$$
d_{L_{1}^{\prime}}\left(I_{p}^{0}, I_{q}^{0}\right)=d_{L_{2}^{\prime}}\left(I_{p}^{0}, I_{q}^{0}\right)
$$

Proof: Let $L_{1}^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ and $L_{2}^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ be two distinct chains which connect the vertices $I_{p}^{0}, I_{q}^{0} \in \quad{ }^{0}$. We form the following union: $L^{\prime}=L_{1}^{1}\left(I_{p}^{0}, I_{q}^{0}\right) \cup L_{2}^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ which is a 1-dimensional cycle and which, accordingly, intersects each class of parallel edges ${ }_{k}, k=\overline{1, m}$, an even number of times, given that the abstract cubic complex K^{n}, examined above, is acyclic. This means that the number of intersections between the chain $L_{1}^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ with the class of parallel edges ${ }_{k}, k=\overline{1, m}$ and the number of intersections between the chain $L_{2}^{1}\left(I_{p}^{0}, I_{q}^{0}\right)$ with the class ${ }_{k}, k=\overline{1, m}$ are both of the same parity. Thus, if we denote by

$$
d_{L_{1}^{1}}\left(I_{p}^{0}, I_{q}^{0}\right)=d\left(L_{1}^{1}\right)=\sum_{k=1}^{m} \varepsilon_{k}^{1} d_{k}
$$

$$
d_{L_{2}^{\prime}}\left(I_{p}^{0}, I_{q}^{0}\right)=d\left(L_{2}^{1}\right)=\sum_{k=1}^{m} \varepsilon_{k}^{2} d_{k}
$$

then $\varepsilon_{k}^{1}=\varepsilon_{k}^{2}$, for any $k=1,2, \ldots, m$, which verifies the theorem equality.
From the Proof above we can conclude that, in the input terminology, all the 1-dimensional chains that connect 2 given vertices: $I_{p}^{0}, I_{q}^{0} \in{ }^{0}$ have the same length. This means that over the vertices set ${ }^{0}$ of the abstract cubic complex K^{n}, univocally, it is defined a function $d:{ }^{0} \times{ }^{0} \rightarrow{ }^{+}$so, that for any two vertices $I_{p}^{0}, I_{q}^{0} \in{ }^{0}$ it is held the following equality:
(1) $d\left(I_{p}^{0}, I_{q}^{0}\right)=\sum_{k=1}^{m} \varepsilon_{k} d_{k}$, where $d_{k} \in R^{+}$represents the weight of the parallel edges class ${ }_{k}, k=1,2, \ldots$, and

$$
\varepsilon_{k}=\left\{\begin{array}{c}
0, \text { if an arbitrary chain taken, which connects the } I_{p}^{0}, I_{q}^{0}, \\
\text { intersects the } C_{k} \text { class an even number of times } \\
1, \text { if an arbitrary chain taken, which connects the } I_{p}^{0}, I_{q}^{0}, \\
\text { intersects the } C_{k} \text { class an uneven number of times }
\end{array}\right.
$$

We denote by $\quad{ }^{1}$ the set of all the 1 -dimensional cubes of the abstract cubic complex K^{n}, and by ${ }_{1}^{l}-$ a certain subset from $\quad{ }^{I}$. Let $F{ }_{l}^{l}$ be the set of all the cubes from K^{n} that contain as its facet at least one cube from $\quad{ }_{1}^{l}$. It is obvious that $\quad{ }_{1}^{1} \subset F{ }_{1}^{l}$.

We denote by $\operatorname{Vid}\left(\begin{array}{ll}F & 1 \\ 1\end{array}\right)$ the union of vacuums of all the cubes from $F \quad{ }_{1}^{1}$.
Definition 4: The $\operatorname{Vid}\left(\begin{array}{ll}F & 1 \\ 1\end{array}\right)$ set, with the property that if we eliminate it from the abstract connected complex K^{n} we obtain two abstract cubic connected complexes, is called transversal of K^{n} and it is denoted by $T_{Q_{l}^{\prime}}\left(K^{n}\right)$.

If \mathcal{K}^{n} is acyclic complex then it is obvious the following theorem:
Theorem 2: Any class of parallel edges of the abstract cubic complex K^{n} determines one of the complex' transversal and is denoted by $T\left(K^{n}\right)$.

Theorem 3: For the set of all 0-dimensional ${ }^{0}$ cubes of the abstract cubic complex K^{n} the function defined by (1) represents an univocal metrics.

Proof: First, it will be proved that the function defined by (1) verifies the following metrical properties:

1) as the weights of the parallel edges classes are real positive numbers, results that for any two elements: $I_{i}^{0}, I_{j}^{0} \in{ }^{0}$ the following inequality takes place $d\left(I_{i}^{0}, I_{j}^{0}\right) \geq 0$. Let us show that $d\left(I_{i}^{0}, I_{j}^{0}\right)=0$ if and only if $I_{i}^{0}=I_{j}^{0}$.
a) If I_{i}^{0} and I_{j}^{0} coincide, i.e. these two vertices are not separated by any transversal, then $\varepsilon_{k}=0, k=1,2, \ldots, m$. Thus, $d\left(I_{i}^{0}, I_{j}^{0}\right)=0$.
b) If $d\left(I_{i}^{0}, I_{j}^{0}\right)=0$, then, because the weights of the parallel edges classes are positive numbers, it results that $\varepsilon_{k}=0, \forall k=1,2, \ldots, m$. Thus, the chain $L^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$ intersects each class of parallel edges ${ }_{k}, k=\overline{1, m}$, an even number of times. This means that the vertices I_{i}^{0}, I_{j}^{0} coincide.
2) Let us demonstrate that for any two elements $I_{i}^{0}, I_{j}^{0} \in{ }^{0}$ takes place the symmetry metrical property: $d\left(I_{i}^{0}, I_{j}^{0}\right)=d\left(I_{j}^{0}, I_{i}^{0}\right)$. Suppose the contrary. This means that there exists an chain $L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$ with the value of the function (1) equal to $d_{L_{1}^{\prime}}\left(I_{i}^{0}, I_{j}^{0}\right)$ and an chain $L_{2}^{1}\left(I_{j}^{0}, I_{i}^{0}\right)$ with the value of the function (1) equal to $d_{L_{2}^{1}}\left(I_{j}^{0}, I_{i}^{0}\right)$, so that $d_{L_{1}^{\prime}}\left(I_{i}^{0}, I_{j}^{0}\right) \neq d_{L_{2}^{\prime}}\left(I_{j}^{0}, I_{i}^{0}\right)$.

We examine the chain $L^{\prime}=L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right) \cup L_{2}^{1}\left(I_{j}^{0}, I_{i}^{0}\right)$, which is obviously a cycle. This cycle intersects each class of parallel edges ${ }_{k}, k=\overline{l, m}$, an even number of times according to the hypotheses that the abstract cubic K^{n} complex is acyclic. Thus, each of the chains $L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right), L_{2}^{1}\left(I_{j}^{0}, I_{i}^{0}\right)$ intersect each class ${ }_{k}, k=\overline{l, m}$, either an even number of times, or an uneven number of times. Considering the function definition (1), as a result we obtain that $L^{\prime}=L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)=L_{2}^{1}\left(I_{j}^{0}, I_{i}^{0}\right)$.
3) Let $I_{i}^{0}, I_{j}^{0}, I_{s}^{0}$ be three different vertices in ${ }^{0}$. It will be proved that the triangle inequality takes place:

$$
d\left(I_{i}^{0}, I_{j}^{0}\right) \leq d\left(I_{i}^{0}, I_{s}^{0}\right)+d\left(I_{s}^{0}, I_{j}^{0}\right)
$$

We denote by $L^{1}\left(I_{i}^{0}, I_{j}^{0}\right), L^{1}\left(I_{i}^{0}, I_{s}^{0}\right), L^{1}\left(I_{s}^{0}, I_{j}^{0}\right)$ the chains that connect the couples of vertices and that have equal lengths with $d\left(I_{i}^{0}, I_{j}^{0}\right), d\left(I_{i}^{0}, I_{s}^{0}\right), d\left(I_{s}^{0}, I_{j}^{0}\right)$. We form the chain $L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)=L^{1}\left(I_{i}^{0}, I_{s}^{0}\right) \bigcup L^{1}\left(I_{s}^{0}, I_{j}^{0}\right)$. Let $d_{i j}^{1}$ be the (1)-function's value determined by the chain $L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$. If we use similar notations for the other cases, i.e. $d_{i s}=d\left(I_{i}^{0}, I_{s}^{0}\right)$ and $d_{s j}=d\left(I_{s}^{0}, I_{j}^{0}\right)$, then we have:

$$
d_{i j}^{1} \leq d_{i s}+d_{s j}
$$

The union $L^{1}\left(I_{i}^{0}, I_{j}^{0}\right) \bigcup L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$ is a cycle, which intersects each class of parallel edges an even number of times, because, according to the hypotheses that the K^{n} complex is acyclic. This means that each of the chains $L^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$ and $L_{1}^{1}\left(I_{i}^{0}, I_{j}^{0}\right)$ intersect each class of parallel edges ${ }_{k}, k=\overline{l, m}$, an even number of times or both of them an uneven number of times, that lead us to the following relation:

$$
d_{i j}=d_{i j}^{1} \leq d_{i s}+d_{s j}
$$

Thus, the property 3) takes place. The metrical uniqueness results from the theorem proved above.

Repherences:

1. Soltan P. On the Homologies of Multy-ary relations and Oriented Hypergraphs // Studii în metode de analiză numerică şi optimizare. (Chişinău). - 2000. - Vol.2. - Nr.1(3). - P.60-81.
2. Cataranciuc S. G-complexul de relații multi-are // Analele Ştiințifice ale USM. Seria „Ştiințe fizico-matematice". Chişinău, 2006, p.119-122.
3. Hilton P.I., Wylie S. Homology Theory (An introduction to Algebraic topology). - Cambridge, 1960, p. 450.
4. Bujac M., Cataranciuc S., Soltan P. On the Division in Cubes of Abstract Manifolds // Buletinul AŞM. Matematica. (Chişinău). - 2006. - Nr.2(51). - P.29-34.
