THE SPECIAL METRICS OF THE ABSTRACT CUBIC COMPLEX

Sergiu CATARANCIUC

Catedra Informatică și Optimizare Discretă

Se examinează complexul cubic abstract K^n ca un caz particular al G-complexului de relații multi-are [2]. Pentru complexul cubic abstract K^n se definește o funcție specială ce posedă proprietățile metricii.

Let $X = \{x_1, x_2, ..., x_r, ...\}$ be a countable set of elements. We form the infinite series of Cartesian products:

where

$$X^{m+1} = X^m \cdot X, \quad m \ge 1.$$

 $X = X^{1}, X^{2}, \dots, X^{n}, \dots$

Any non-empty subset $R^m \subset X^m$, $m \ge 1$, is called an *m*-ary relation of the elements from *X*. We mention that the 1-ary relation $R^1 \subset X^1$ represents a subset of elements from *X*. Thus, an *m*-ary R^m relation is a family of ordered successions of the following type $(x_{i_1}, x_{i_2}, ..., x_{i_m})$, where $x_{i_1}, x_{i_2}, ..., x_{i_m}$ are elements of *X*. The elements of the *m*-ary relation R^m will be called *corteges*. In general, any cortege $(x_{i_1}, x_{i_2}, ..., x_{i_m})$ may contain also repetitions of the elements from *X*. For a cortege $(x_{i_1}, x_{i_2}, ..., x_{i_m}) \in R^m$, any subcortege

 $(x_{j_1}, x_{j_2}, ..., x_{j_l}), 1 \le l \le m$, that preserves the order of elements in $(x_{i_1}, x_{i_2}, ..., x_{i_m})$, is called *hereditary* subcortege.

Definition 1. The finite family of relations $\{R^1, R^2, ..., R^{n+1}\}$ that satisfies the following conditions:

- $I. \qquad R^1 = X^1 = X,$
- II. $R^{n+1} \neq \emptyset$,
- III. any hereditary subseries $(x_{j_1}, x_{j_2}, ..., x_{j_l}), 1 \le l \le m \le n+1$ from $(x_{i_1}, x_{i_2}, ..., x_{i_m}) \in \mathbb{R}^m$ belongs to the *l*-ary relation \mathbb{R}^l ,
- *IV.* for an arbitrary cortege from R^m , $1 \le m \le n+1$, the set of all corteges from the family $\{R^{m+1}, ..., R^{n+1}\}$, which have the given cortege as an hereditary subcortege, is a finite set,

is called *G*-complex of multi-ary relations and it is denoted by

$$R^{n+1} = \{R^1, R^2, ..., R^{n+1}\}.$$

The fundamental definitions related to the examination of a G-complex of multi-ary relations, along with its properties are described in [1, 2].

The studying of such objects as the \mathcal{G} -complex of multi-ary relations is of interest by the fact that they generalize a series of classical discrete structures, as graphs, hypergraphs, the abstract simplicial complexes, etc., as well as by the possibility of elaborating efficient methods for solving some important applicative problems.

A particular case of the G-complex of multi-ary relations, which appears in a lot of applicative problems, is the abstract cubic complex. The notion of cubic complex has been denoted for the first time in [4]. Thus, in the Euclidian space E^{n+1} , it is defined the following complex of finite-dimensional unitary cubes:

Revistă științifică a Universității de Stat din Moldova, 2008, nr.3(13)

 $\mathcal{K}^n = \left\{ I_{\lambda}^m : \lambda \in \Lambda, \, 0 \le m \le n \right\},\,$

as well as the series of direct cubic homologies groups $H_0(\mathcal{K}^n, \mathbf{Z}), H_1(\mathcal{K}^n, \mathbf{Z}), ..., H_n(\mathcal{K}^n, \mathbf{Z})$ of

- \mathcal{K}^n over the integer field **Z**, [3, 4].
 - The definition of \mathcal{K}^n is quite simple:
 - 1) each facet $I^k \subset I^m$, $0 \le k \le m \le n$ is an element of \mathcal{K}^n ;
 - 2) for each couple of cubes $I_{\lambda_1}^{m_1}, I_{\lambda_2}^{m_2} \in \mathcal{K}^n$, the $I_{\lambda_1}^{m_1} \cap I_{\lambda_2}^{m_2}$ product us null or represents an element from \mathcal{K}^n .

If the \mathcal{K}^n complex is connected, then the $H_0(\mathcal{K}^n, \mathbf{Z})$ group is isomorphic with the set of integer numbers \mathbf{Z} :

$$H_0(\mathcal{K}^n, \mathbf{Z}) \cong \mathbf{Z}$$

We will consider that for \mathcal{K}^n are hold the following relations:

$$H_0(\mathscr{K}^n, \mathbf{Z}) \cong \mathbf{Z}, H_1(\mathscr{K}^n, \mathbf{Z}) \cong H_2(\mathscr{K}^n, \mathbf{Z}) \cong ... \cong H_n(\mathscr{K}^n, \mathbf{Z}) \cong 0.$$

Under these conditions, the complex \mathcal{K}^n is called *acyclic complex*.

Next, we will consider that \mathcal{K}^n is a non-oriented finite abstract cubic complex, formed by *m*-dimensional cubes I^m , $0 \le m \le n$, and that contains at least one *n*-dimensional cube I^n . In this case we say that the complex \mathcal{K}^n is *n*-dimensional. Evidently, some of the *m*-dimensional cubes from \mathcal{K}^n are subcubes of the cubes with a greater dimension in \mathcal{K}^n . Geometrically, in the linear space \mathbb{R}^n over the real field \mathbb{R} , the *m*-dimensional cubes of which it is formed the \mathcal{K}^n \mathcal{C} -complex can be interpreted as follows:

It is denoted by ^{*m*} the family of all the *m*-dimensional cubes from \mathcal{K}^n :

$$^{m} = \left\{ I^{m} : I^{m} \in \mathcal{K}^{n} \right\}, \ 0 \leq m \leq n.$$

Definition 2: It is called a frontier of the cubic G-compl \mathcal{K}^n , the set of all (n-1)-dimensional cubes

that belong to at most one n-dimensional cube, denoted by $bd^{n-1}\mathcal{K}^n$.

So, the 2-dimensional frontier of an abstract 3-dimensional cube I^3 is formed by all the 2-dimensional facets of this cube, and topologically frames an abstract 2-dimensional sphere. If \mathcal{K}^3 is consisted of two 3-dimensional cubes with a single common vertex, then $bd^{n-1}\mathcal{K}^n$ topologically represents two abstract 2-dimensional spheres with a common point.

Let now I^n be an *n*-dimensional cube, and VI^n its vacuum (the vacuum definition can be found in [4]). We mention that by definition $VI^0 = I^0$.

Definition 3: The union of vacuums of all the abstract cubes in the G complex \mathcal{K}^n , that do not belong to the frontier $bd^{n-1}\mathcal{K}^n$ is called the interior of the G complex \mathcal{K}^n , denoted by $int^n \mathcal{K}^n$.

Let $= \bigcup_{m=0}^{n} \int_{0}^{m} be$ the family of all the cubes in \mathcal{K}^{n} . We denote by $_{0} \subset$ the family of all the

m-dimensional cubes from \mathcal{K}^n that don't belong to this ones' frontier. Thus:

int
$$\mathcal{K}^n = \bigcup_{I^m \in Q_0} VI^m$$
.

We will examine forwards the abstract cubic G complex \mathcal{K}^n , connected and acyclic, with the following properties:

- 1) if $I^0 \in int^n \mathcal{K}^n$, then I^0 belongs to at least 2^n *n*-dimensional cubes;
- 2) if $I^0 \in bd^{n-1} \mathcal{K}^n$, and belongs to at least 2 *n*-dimensional I^n cubes from \mathcal{K}^n , then I^0 belongs to a number not less than n+1 of (n-1)-dimensional cubes.

Let $_1, _2, ..., _m$ be the classes of parallel edges of the abstract cubic complex \mathcal{K}^n . We choose two arbitrary elements: $I_p^0, I_q^0 \in {}^0$. We mention that the 0 set can be considered as the set of vertices of the graph from the 1-dimensional skeleton of $skl \mathcal{K}^n$.

It will be denoted by \mathcal{L}^1 the set of all the linear chains of the \mathcal{K}^1 subcomplex, which is in fact the 1dimensional skeleton of the abstract cubic complex \mathcal{K}^n . We define the function $d : \mathcal{L}^l \to \mathbb{R}^+$ on \mathcal{L}^l , so that, if the chain $L^1 \in \mathcal{L}^1$, then

$$d(L^{1}) = \sum_{k=1}^{m} \varepsilon_{k} d_{k} , \qquad (1)$$

Where $d_k \in \mathbb{R}^+$ represents the weight of the parallel edges class, $k = \overline{l, m}$, and

 $\varepsilon_{k} = \begin{cases} 0, \text{ if the } L^{1} \text{ chain intersects the } C_{k} \text{ class an even number of times} \\ 1, \text{ if the } L^{1} \text{ chain intersects the } C_{k} \text{ class an uneven number of times.} \end{cases}$

(in the case when L^1 doesn't contain edges from $_k$ it will be considered that the number of intersections with this particular class is even). If $I_p^0, I_q^0 \in {}^0$ are extremities of the $L^1 = L^1(I_p^0, I_q^0)$ then it will be used the following notation:

$$d_{L^1}\left(I_p^0, I_q^0\right) = d\left(L^1\right) = \sum_{k=1}^m \varepsilon_k d_k \cdot$$

The $d(L^1)$ number will be called the length of the $L^1(I_p^0, I_q^0)$ chain.

Theorem 1: If $L_1^1(I_p^0, I_q^0), L_2^1(I_p^0, I_q^0) \in \mathcal{L}^1$ are two distinct linear chains that connect the vertices $I_p^0, I_q^0 \in {}^0$, then:

$$d_{L_1^1}(I_p^0, I_q^0) = d_{L_2^1}(I_p^0, I_q^0).$$

Proof: Let $L_1^1(I_p^0, I_q^0)$ and $L_2^1(I_p^0, I_q^0)$ be two distinct chains which connect the vertices $I_p^0, I_q^0 \in$ We form the following union: $L' = L_1^1(I_p^0, I_q^0) \cup L_2^1(I_p^0, I_q^0)$ which is a 1-dimensional cycle and which, accordingly, intersects each class of parallel edges $_k, k = \overline{I, m}$, an even number of times, given that the abstract cubic complex \mathcal{K}^n , examined above, is acyclic. This means that the number of intersections between the chain $L_1^1(I_p^0, I_q^0)$ with the class of parallel edges $_k, k = \overline{I, m}$ and the number of intersections between the chain $L_2^1(I_p^0, I_q^0)$ with the class $_k, k = \overline{I, m}$ are both of the same parity. Thus, if we denote by

$$d_{L_{1}^{1}}(I_{p}^{0}, I_{q}^{0}) = d(L_{1}^{1}) = \sum_{k=1}^{m} \varepsilon_{k}^{1} d_{k}$$

$$d_{L_{2}^{1}}(I_{p}^{0}, I_{q}^{0}) = d(L_{2}^{1}) = \sum_{k=1}^{m} \varepsilon_{k}^{2} d_{k}$$

then $\mathcal{E}_k^1 = \mathcal{E}_k^2$, for any k = 1, 2, ..., m, which verifies the theorem equality. From the Proof above we can conclude that, in the input terminology, all the 1-dimensional chains that connect 2 given vertices: $I_p^0, I_q^0 \in {}^0$ have the same length. This means that over the vertices set 0 of the abstract cubic complex \mathcal{K}^n , univocally, it is defined a function $d: {}^0 \times {}^0 \rightarrow {}^+$ so, that for any two vertices $I_p^0, I_q^0 \in {}^0$ it is held the following equality:

(1)
$$d(I_p^0, I_q^0) = \sum_{k=1}^m \varepsilon_k d_k$$
, where $d_k \in \mathbb{R}^+$ represents the weight of the parallel edges class $_k, k = 1, 2, ...,$ and

 $\varepsilon_{k} = \begin{cases} 0, \text{ if an arbitrary chain taken, which connects the } I_{p}^{0}, I_{q}^{0}, \\ \text{intersects the } C_{k} \text{ class an even number of times} \\ I, \text{ if an arbitrary chain taken, which connects the } I_{p}^{0}, I_{q}^{0}, \end{cases}$ intersects the C_k class an uneven number of times

We denote by I the set of all the 1-dimensional cubes of the abstract cubic complex \mathcal{K}^{n} , and by $^{I}_{I}$ a certain subset from l . Let F_{l}^{l} be the set of all the cubes from \mathcal{K}^{n} that contain as its facet at least one cube from $\frac{1}{l}$. It is obvious that $\frac{1}{l} \subset F = \frac{1}{l}$.

We denote by $Vid(F = \frac{1}{L})$ the union of vacuums of all the cubes from $F = \frac{1}{L}$.

Definition 4: The $Vid(F = \frac{1}{L})$ set, with the property that if we eliminate it from the abstract connected complex \mathcal{K}^n we obtain two abstract cubic connected complexes, is called transversal of \mathcal{K}^n and it is denoted by $T_{\Omega_{i}^{l}}(\mathcal{K}^{n})$.

If \mathcal{L}^n is acyclic complex then it is obvious the following theorem:

Theorem 2: Any class of parallel edges of the abstract cubic complex \mathcal{K}^n determines one of the complex' transversal and is denoted by T (\mathcal{K}^n).

Theorem 3: For the set of all 0-dimensional ⁰ cubes of the abstract cubic complex \mathcal{K}^n the function defined by (1) represents an univocal metrics.

Proof: First, it will be proved that the function defined by (1) verifies the following metrical properties:

1) as the weights of the parallel edges classes are real positive numbers, results that for any two elements: $I_i^0, I_j^0 \in {}^0$ the following inequality takes place $d(I_i^0, I_j^0) \ge 0$. Let us show that $d(I_i^0, I_j^0) = 0$ if and only if $I_i^0 = I_i^0$.

- a) If I_i^0 and I_j^0 coincide, i.e. these two vertices are not separated by any transversal, then $\varepsilon_k = 0, \ k = 1, 2, ..., m$. Thus, $d(I_i^0, I_j^0) = 0$.
- b) If $d(I_i^0, I_j^0) = 0$, then, because the weights of the parallel edges classes are positive numbers, it results that $\varepsilon_k = 0$, $\forall k = 1, 2, ..., m$. Thus, the chain $L^1(I_i^0, I_j^0)$ intersects each class of parallel edges _k, $k = \overline{I, m}$, an even number of times. This means that the vertices I_i^0 , I_j^0 coincide.

2) Let us demonstrate that for any two elements $I_i^0, I_j^0 \in {}^0$ takes place the symmetry metrical property: $d(I_i^0, I_j^0) = d(I_j^0, I_i^0)$. Suppose the contrary. This means that there exists an chain $L_1^1(I_i^0, I_j^0)$ with the value of the function (1) equal to $d_{L_1^1}(I_i^0, I_j^0)$ and an chain $L_2^1(I_j^0, I_i^0)$ with the value of the function (1) equal to $d_{L_2^1}(I_i^0, I_j^0) \neq d_{L_2^1}(I_j^0, I_i^0)$.

We examine the chain $L' = L_1^1(I_i^0, I_j^0) \cup L_2^1(I_j^0, I_i^0)$, which is obviously a cycle. This cycle intersects each class of parallel edges $_k$, $k = \overline{I,m}$, an even number of times according to the hypotheses that the abstract cubic \mathcal{K}^n complex is acyclic. Thus, each of the chains $L_1^1(I_i^0, I_j^0)$, $L_2^1(I_j^0, I_i^0)$ intersect each class $_k$, $k = \overline{I,m}$, either an even number of times, or an uneven number of times. Considering the function definition (1), as a result we obtain that $L' = L_1^1(I_i^0, I_j^0) = L_2^1(I_j^0, I_i^0)$.

3) Let I_i^0, I_j^0, I_s^0 be three different vertices in 0 . It will be proved that the triangle inequality takes place:

$$d(I_i^0, I_j^0) \le d(I_i^0, I_s^0) + d(I_s^0, I_j^0).$$

We denote by $L^1(I_i^0, I_j^0)$, $L^1(I_i^0, I_s^0)$, $L^1(I_s^0, I_j^0)$ the chains that connect the couples of vertices and that have equal lengths with $d(I_i^0, I_j^0)$, $d(I_i^0, I_s^0)$, $d(I_s^0, I_j^0)$. We form the chain $L_1^1(I_i^0, I_j^0) = L^1(I_i^0, I_s^0) \cup L^1(I_s^0, I_j^0)$. Let d_{ij}^1 be the (1)-function's value determined by the chain $L_1^1(I_i^0, I_j^0)$. If we use similar notations for the other cases, i.e. $d_{is} = d(I_i^0, I_s^0)$ and $d_{sj} = d(I_s^0, I_j^0)$, then we have:

$$d_{ij}^1 \leq d_{is} + d_{sj}.$$

The union $L^1(I_i^0, I_j^0) \cup L^1_1(I_i^0, I_j^0)$ is a cycle, which intersects each class of parallel edges an even

number of times, because, according to the hypotheses that the \mathcal{K}^n complex is acyclic. This means that each of the chains $L^1(I_i^0, I_j^0)$ and $L^1_1(I_i^0, I_j^0)$ intersect each class of parallel edges k, $k = \overline{I,m}$, an even number of times or both of them an uneven number of times, that lead us to the following relation:

$$d_{ij} = d_{ij}^1 \le d_{is} + d_{s}$$

Thus, the property 3) takes place. The metrical uniqueness results from the theorem proved above. ■

Repherences:

- Soltan P. On the Homologies of Multy-ary relations and Oriented Hypergraphs // Studii în metode de analiză numerică și optimizare. (Chișinău). - 2000. - Vol.2. - Nr.1(3). - P.60-81.
- Cataranciuc S. G-complexul de relații multi-are // Analele Științifice ale USM. Seria "Științe fizico-matematice". -Chişinău, 2006, p.119-122.
- 3. Hilton P.I., Wylie S. Homology Theory (An introduction to Algebraic topology). Cambridge, 1960, p.450.
- Bujac M., Cataranciuc S., Soltan P. On the Division in Cubes of Abstract Manifolds // Buletinul AŞM. Matematica. (Chişinău). - 2006. - Nr.2(51). - P.29-34.

Prezentat la 01.07.2008