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THE SPECIAL METRICS OF THE ABSTRACT CUBIC COMPLEX 
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Catedra Informatică şi Optimizare Discretă 
 

Se examinează complexul cubic abstract nK  ca un caz particular al G -complexului de relaţii multi-are [2]. Pentru 
complexul cubic abstract nK  se defineşte o funcţie specială ce posedă proprietăţile metricii.  

 
 

Let { }1 2, , ..., , ...rX x x x=  be a countable set of elements. We form the infinite series of Cartesian 
products: 

1 2, , ..., , ...nX X X X=  
where 

1 , 1m mX X X m+ = ⋅ ≥ . 

Any non-empty subset , 1m mR X m⊂ ≥ , is called an m-ary relation of the elements from X. We 

mention that the 1-ary  relation 1 1R X⊂  represents a subset of elements from X. Thus, an m-ary mR  relation 
is a family of ordered successions of the following type ( )

1 2
, , ...,

mi i ix x x , where 
1 2
, , ...,

mi i ix x x  are elements of 

X. The elements of the m-ary relation mR  will be called corteges. In general, any cortege ( )
1 2
, , ...,

mi i ix x x  

may contain also repetitions of the elements from X. For a cortege ( )
1 2
, , ...,

m

m
i i ix x x R∈ , any subcortege 

( )
1 2
, , ..., ,1

lj j jx x x l m≤ ≤ , that preserves the order of elements in ( )
1 2
, , ...,

mi i ix x x , is called hereditary 

subcortege. 
Definition 1. The finite family of relations { }1 2 1, , ..., nR R R +  that satisfies the following conditions:  

I. 1 1 ,R X X= =  
II. 1 ,nR + ≠∅  

III. any hereditary subseries ( )
1 2
, , ..., , 1 1

lj j jx x x l m n≤ ≤ ≤ +  from ( )
1 2
, , ...,

m

m
i i ix x x R∈  belongs 

to the l-ary relation lR , 
IV. for an arbitrary cortege from ,1 1mR m n≤ ≤ + , the set of all corteges from the family 

{ }1 1, ...,m nR R+ + , which have the given cortege as an hereditary subcortege, is a finite set, 

is called G–complex of multi-ary relations and it is denoted by 

{ }1 1 2 1, , ...,n nR R R R+ += . 

The fundamental definitions related to the examination of a G–complex of multi-ary relations, along with 
its properties are described in [1, 2]. 

The studying of such objects as the G–complex of multi-ary relations is of interest by the fact that they 
generalize a series of classical discrete structures, as graphs, hypergraphs, the abstract simplicial complexes, 
etc., as well as by the possibility of elaborating efficient methods for solving some important applicative 
problems. 

A particular case of the G–complex of multi-ary relations, which appears in a lot of applicative problems, 
is the abstract cubic complex. The notion of cubic complex has been denoted for the first time in [4]. Thus, in 
the Euclidian space 1nE + , it is defined the following complex of finite-dimensional unitary cubes: 
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K { }: , 0n mI m nλ λ= ∈Λ ≤ ≤ , 

as well as the series of direct cubic homologies groups (0H K ) (1, ,n HZ K ), ,n Z  (..., nH K ),n Z  of 

K n  over the integer field Z , [3, 4]. 

The definition of K n  is quite simple: 

1) each facet , 0k mI I k m n⊂ ≤ ≤ ≤  is an element of K n ; 

2) for each couple of cubes  1 2

1 2
,m mI Iλ λ ∈ K n , the 1 2

1 2

m mI Iλ λI  product us null or represents an element 

from K n . 

If the K n  complex is connected, then the (0H K ),n Z  group is isomorphic with the set of integer 

numbers Z:  

(0H K ),n ≅Z Z  

We will consider that for K n  are hold the following relations: 

(0H K ) (1, ,n H≅Z Z K ),n ≅Z (2H K ),n ≅Z (... nH≅ K ), 0n ≅Z . 

Under these conditions, the complex K n is called acyclic complex. 

Next, we will consider that K n  is a non-oriented finite abstract cubic complex, formed by m-dimensional 

cubes mI , 0 m n≤ ≤ , and that contains at least one n-dimensional cube nI . In this case we say that the 

complex K n  is n-dimensional. Evidently, some of the m-dimensional cubes from K n  are subcubes of the cubes 

with a greater dimension in K n . Geometrically, in the linear space nR  over the real field R , the m-dimensional 

cubes of which it is formed the K n  G-complex can be interpreted as follows: 

It is denoted by � m the family of all the m-dimensional cubes from K n : 
� m { ∈= mm II :  K } ., nm0n ≤≤  

Definition 2: It is called a frontier of the cubic G-complK n ,  the set of all ( )1n − -dimensional cubes 

that belong to at most one n-dimensional cube, denoted by  1nbd − K n . 
So, the 2-dimensional frontier of an abstract 3-dimensional cube 3I  is formed by all the 2-dimensional facets 

of this cube, and topologically frames an abstract 2-dimensional sphere. If K3  is consisted of two 3-dimensional 

cubes with a single common vertex, then 1nbd − K n  topologically represents two abstract 2-dimensional 
spheres with a common point. 

Let now nI  be an n-dimensional cube, and nVI  its vacuum (the vacuum definition can be found in [4]). 
We mention that by definition 0 0VI I= . 

Definition 3: The union of vacuums of all the abstract cubes in the G-complex K n , that do not belong to 

the frontier 1nbd − K n  is called the interior of the G-complex K n , denoted by nint K n . 

Let � U
n

0m=
= � m  be the family of all the cubes in K n . We denote by � ⊂0 � the family of all the  

m-dimensional cubes from K n that don’t belong to this ones’ frontier. Thus: 

int K U
0

m QI

mn VI
∈

= . 
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We will examine forwards the abstract cubic G-complex K n , connected and acyclic, with the following 
properties: 

1) if 0 nI int∈ K n , then 0I  belongs to at least 2n  n-dimensional cubes; 

2) if 0 1nI bd −∈ K n , and belongs to at least 2 n-dimensional nI  cubes from K n , then 0I  belongs to a 
number not less than 1n +  of  ( )1n − -dimensional cubes. 

Let � 1 ,� 2 ,…,� m  be the classes of parallel edges of the abstract cubic complex K n . We choose two 

arbitrary elements: ∈0
q

0
p II , � 0 . We mention that the � 0  set can be considered as the set of vertices of the 

graph from the 1-dimensional skeleton of skl K n . 

It will be denoted by L1  the set of all the linear chains of the K1  subcomplex, which is in fact the 1-

dimensional skeleton of the abstract cubic complex K n . We define the function :d  L →1 R +  on L1 , so 

that, if the chain 1L ∈L1 , then  

( )1

1

m

k k
k

d L dε
=

= ∑ ,       (1) 

Where ∈kd  R +  represents the weight of the parallel edges class, � k , m1k ,= , and  
1

1

if the  chain intersects the  class an even number of times

if the  chain intersects the  class an uneven number of times

0,

1, .
k

k
k

L C

L C
ε

⎧⎪= ⎨
⎪⎩

 

(in the case when 1L  doesn’t contain edges from � k  it will be considered that the number of intersections 

with this particular class is even). If ∈0
q

0
p II ,  � 0  are extremities of the ( )1 1 0 0,p qL L I I=  then it will be used 

the following notation: 

( ) ( )1
0 0 1

1
,

m

p q k kL
k

d I I d L dε
=

= = ∑ . 

The ( )1d L  number will be called the length of the ( )1 0 0,p qL I I  chain. 

Theorem 1: If  ( ) ( )1 0 0 1 0 0
1 2, , ,p q p qL I I L I I ∈ L1 are two distinct linear chains that connect the vertices 

∈0
q

0
p II ,  � 0 , then:  

( ) ( )1 1
1 2

0 0 0 0, ,p q p qL Ld I I d I I= . 

Proof: Let ( )1 0 0
1 ,p qL I I  and ( )1 0 0

2 ,p qL I I  be two distinct chains which connect the  vertices ∈0
q

0
p II ,  � 0 . 

We form the following union: ( ) ( )1 0 0 1 0 0
1 2, ,p q p qL L I I L I I′ = U  which is a 1-dimensional cycle and which, 

accordingly, intersects each class of parallel edges � k , m1k ,= , an even number of times, given that the 

abstract cubic complex K n , examined above, is acyclic. This means that the number of intersections 
between the chain ( )1 0 0

1 ,p qL I I  with the class of parallel edges � k , m1k ,=  and the number of intersections 

between the chain ( )1 0 0
2 ,p qL I I  with the class � k , m1k ,=  are both of the same parity. Thus, if we denote by  

( ) ( )1
1

0 0 1 1
1

1
,

m

p q k kL
k

d I I d L dε
=

= = ∑  
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( ) ( )1
2

0 0 1 2
2

1
,

m

p q k kL
k

d I I d L dε
=

= = ∑  

then 1 2
k kε ε= , for any 1, 2, ...,k m= , which verifies the theorem equality.  

From the Proof above we can conclude that, in the input terminology, all the 1-dimensional chains that 
connect 2 given vertices: ∈0

q
0
p II ,  � 0  have the same length. This means that over the vertices set � 0  of the 

abstract cubic complex K n , univocally, it is defined a function :d � 0 ×  � 0 →  � +  so, that for any two 
vertices ∈0

q
0
p II ,  � 0  it is held the following equality:  

(1) ( )0 0

1
,

m

p q k k
k

d I I dε
=

= ∑ , where +∈Rdk  represents the weight of the parallel edges class � k , ,...,21k = , and  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

 timesofnumber uneven an  class theintersects

 theconnects which n,chain takearbitrary an  if,

 timesofnumber even an  class theintersects

 theconnects which n,chain takearbitrary an  if,

 C       

,I,I   1

 C       

 ,I,I   0

k

0
q

0
p

k

0
q

0
p

kε  

We denote by � 1  the set of all the 1-dimensional cubes of the abstract cubic complex K n , and by � 1
1   - 

a certain subset from � 1 . Let F� 1
1  be the set of all the cubes from K n  that contain as its facet at least one 

cube from � 1
1 . It is obvious that � 1

1 ⊂  F� 1
1 . 

We denote by Vid(F� 1
1 ) the union of vacuums of all the cubes from F� 1

1 . 
Definition 4: The Vid(F� 1

1 ) set, with the property that if we eliminate it from the abstract connected 

complex K n  we obtain two abstract cubic connected complexes, is called transversal of K n  and it is 
denoted by 1

1Q
T ( K n ). 

If  K n is acyclic complex then it is obvious the following theorem: 

Theorem 2: Any class � of parallel edges of the abstract cubic complex K n  determines one of the 
complex’  transversal and is denoted by T� (K n ). 

Theorem 3: For the set of all 0-dimensional � 0 cubes of the abstract cubic complex K n  the function 
defined by (1) represents an univocal metrics. 

Proof: First, it will be proved that the function defined by (1) verifies the following metrical properties: 
1) as the weights of the parallel edges classes are real positive numbers, results that for any two elements: 

∈0
j

0
i II , � 0  the following inequality takes place ( )0 0, 0i jd I I ≥ . Let us show that ( )0 0, 0i jd I I =  if and 

only if 0 0
i jI I= . 

a) If 0
iI  and 0

jI  coincide, i.e. these two vertices are not separated by any transversal, then 

0, 1, 2, ...,k k mε = = . Thus, ( )0 0, 0i jd I I = . 

b) If ( )0 0, 0i jd I I = , then, because the weights of the parallel edges classes are positive numbers, it 

results that 0, 1, 2, ...,k k mε = ∀ = . Thus, the chain ( )1 0 0,i jL I I  intersects each class of parallel 

edges � k , m1k ,= , an even number of times. This means that the vertices 0
iI , 0

jI  coincide. 
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2) Let us demonstrate that for any two elements ∈0
j

0
i II , � 0  takes place the symmetry metrical property: 

( ) ( )0 0 0 0, ,i j j id I I d I I= . Suppose the contrary. This means that there exists an chain ( )1 0 0
1 ,i jL I I  with the 

value of the function (1) equal to ( )1
1

0 0,i jLd I I  and an chain ( )1 0 0
2 ,j iL I I  with the value of the function (1) 

equal to ( )1
2

0 0,j iLd I I , so that ( ) ( )1 1
1 2

0 0 0 0, ,i j j iL Ld I I d I I≠ .  

We examine the chain ( ) ( )1 0 0 1 0 0
1 2, ,i j j iL L I I L I I′ = U , which is obviously a cycle. This cycle intersects 

each class of parallel edges � k , m1k ,= , an even number of times according to the hypotheses that the 

abstract cubic K n  complex is acyclic. Thus, each of the chains ( )1 0 0
1 ,i jL I I , ( )1 0 0

2 ,j iL I I  intersect each 

class � k , m1k ,= , either an even number of times, or an uneven number of times. Considering the function 

definition (1), as a result we obtain that ( ) ( )1 0 0 1 0 0
1 2, ,i j j iL L I I L I I′ = = . 

3) Let 0 0 0, ,i j sI I I  be three different vertices in � 0 . It will be proved that the triangle inequality takes 

place: 

( ) ( ) ( )0 0 0 0 0 0, , ,i j i s s jd I I d I I d I I≤ + . 

We denote by ( ) ( ) ( )1 0 0 1 0 0 1 0 0, , , , ,i j i s s jL I I L I I L I I  the chains that connect the couples of vertices and 

that have equal lengths with ( ) ( ) ( )0 0 0 0 0 0, , , , ,i j i s s jd I I d I I d I I . We form the chain 

( ) ( ) ( )1 0 0 1 0 0 1 0 0
1 , , ,i j i s s jL I I L I I L I I= U . Let 1

ijd  be the (1)-function’s value determined by the chain 

( )1 0 0
1 ,i jL I I . If we use similar notations for the other cases, i.e. ( )0 0,is i sd d I I=  and ( )0 0,sj s jd d I I= , 

then we have: 
1
ij is sjd d d≤ + . 

The union ( ) ( )1 0 0 1 0 0
1, ,i j i jL I I L I IU  is a cycle, which intersects each class of parallel edges an even 

number of times, because, according to the hypotheses that the K n  complex is acyclic. This means that each 
of the chains ( )1 0 0,i jL I I  and ( )1 0 0

1 ,i jL I I  intersect each class of parallel edges � k , m1k ,= , an even 

number of times or both of them an uneven number of times, that lead us to the following relation: 
1

ij ij is sjd d d d= ≤ +  

Thus, the property 3) takes place. The metrical uniqueness results from the theorem proved above.  
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