Pseudo-automorphisms of middle Bol loops

Ion Grecu

Abstract

The set of Moufang elements in a middle Bol loop is considered in the present work. We prove that every inner mapping of the Moufang part (which is a subloop) of a middle Bol loop (Q, \cdot) extends to a right pseudo-automorphism of (Q, \cdot) .

Keywords: loop, multiplication group, inner mapping, middle Bol loop, pseudo-automorphism.

A grupoid (Q, \cdot) is called a quasigroup if the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions, for $\forall a, b \in Q$. A loop is a quasigroup with a neutral element. Two quasigroups (Q, \cdot) and (Q, *) are isotopic, if there exist $\alpha, \beta, \gamma \in S_Q$, such that $x * y = \gamma^{-1}(\alpha(x) \cdot \beta(y)), \forall x, y \in Q$. If (Q, A) is a quasigroup and $\sigma \in S_3$, then the operation σA , defined by the equivalence $\sigma A(x_{\sigma(1)}, x_{\sigma(2)}) = x_{\sigma(3)} \Leftrightarrow A(x_1, x_2) = x_3$, is called a σ -parastrophe of the operation A. The product of an isotopy and a parastrophy, in any order, of a quasigroup (Q, \cdot) is called an isostrophy of (Q, \cdot) .

A loop (Q, \cdot) is called a middle Bol loop if it satisfies the identity: $x(yz \setminus x) = (x/z)(y \setminus x)$. It is proved in [4] that middle Bol loops are isostrophes of left (resp. right) Bol loops. Namely, a loop (Q, \circ) is middle Bol if and only if there exists a right (left) Bol loop (Q, \cdot) , such that, $\forall x, y \in Q$:

$$x \circ y = y^{-1} \backslash x, \quad (resp. \ x \circ y = x/y^{-1}). \tag{1}$$

Let (Q, \cdot) be a loop. We consider the sets:

$$M_l^{(\cdot)} = \{ a \in Q \mid a(y \cdot az) = (ay \cdot a)z, \forall y, z \in Q \},$$

^{©2017} by Ion Grecu

$$M_r^{(\cdot)} = \{ a \in Q \mid (za \cdot y)a = z(a \cdot ya), \forall y, z \in Q \},$$
$$M^{(\cdot)} = \{ a \in Q \mid ay \cdot za = a(yz \cdot a), \forall y, z \in Q \}.$$

Lemma 1. [3] If (Q, \cdot) is a middle Bol loop, then $M_l^{(\cdot)} = M_r^{(\cdot)} = M^{(\cdot)}_r$ and form a subbloop in (Q, \cdot) .

Definition. Let (Q, \cdot) be a middle Bol loop. The subbloop $M^{(\cdot)}$ is called the Moufang part of (Q, \cdot) .

Let (Q, \cdot) be an arbitrary loop, $\varphi \in S_Q$ and $c \in Q$. Recall that: a) φ is called a left (resp. right) pseudo-automorphism of (Q, \cdot) , with the companion c, if the equality

$$c \cdot \varphi(x \cdot y) = [c \cdot \varphi(x)] \cdot \varphi(y),$$

respectively,

$$\varphi(x \cdot y) \cdot c = \varphi(x) \cdot [\varphi(y) \cdot c],$$

holds, for every $x, y \in Q$.

Pseudo-automorphisms (left, right) have been introduced by Bruck [1] and were studied by many authors (see, for example, [1-3,5]). Bruck proved in [1] that every inner mapping of a Moufang loop is a pseudo-automorphism of this loop. Recall that a mapping α of the multiplication group $M(Q, \cdot) = \langle L_x^{(\cdot)}, R_y^{(\cdot)} | x, y \in Q \rangle$ of a loop (Q, \cdot) is called an inner mapping of (Q, \cdot) if $\alpha(e) = e$, where e is the neutral element of this loop.

Theorem 1. Let (Q, \cdot) be a middle Bol loop. Each inner mapping of $M^{(\cdot)}$ extends to a pseudo-automorphism of (Q, \cdot) .

Proof. Let $H = \langle L_x^{(\cdot)}, R_y^{(\cdot)} | x, y \in M^{(\cdot)} \rangle$ be the multiplication group of the subloop $M^{(\cdot)}$, where $L_x^{(\cdot)}(z) = x \cdot z$ and $R_y^{(\cdot)}(z) = z \cdot y$, for all $z \in Q$. If $a \in M^{(\cdot)}$, then $L_a^{(\cdot)-1} = L_{a^{-1}}^{(\cdot)}$ and $R_a^{(\cdot)-1} = R_{a^{-1}}^{(\cdot)}$. Indeed, if $a \in M^{(\cdot)}$ then $ay \cdot za = a(yz \cdot a)$, for every $y, z \in Q$. Now, taking $z = a^{-1}$ in the last equality, we get:

$$\begin{split} a \cdot y &= a \cdot (ya^{-1} \cdot a) \Rightarrow y = ya^{-1} \cdot a = \\ &= R_a^{(\cdot)} R_{a^{-1}}^{(\cdot)}(y) \Rightarrow R_a^{(\cdot)-1}(y) = R_{a^{-1}}^{(\cdot)}(y), \end{split}$$

 $\forall y \in Q$. As $M^{(\cdot)} = M_l^{(\cdot)}$, for $a \in M^{(\cdot)}$ the equality $a(y \cdot az) = (ay \cdot a)z$ holds, for every $y, z \in Q$. Taking $y = a^{-1}$ in the last equality, we get:

$$a(a^{-1} \cdot az) = a \cdot z \Rightarrow a^{-1} \cdot az = z \Rightarrow L_{a^{-1}}^{(\cdot)} L_a^{(\cdot)}(z) = z$$

 $\forall z \in Q, \text{ so } L_{a^{-1}}^{(\cdot)} = L_a^{(\cdot)-1}.$

If $U \in H$, then U can be expressed in the form $U = U_1 U_2 ... U_n$, where $U_i = R_{a_i}^{(\cdot)}$ or $U_i = L_{a_i}^{(\cdot)}$, for some $a_i \in M^{(\cdot)}$. Let $a \in M^{(\cdot)}$, then $ay \cdot za = a(yz \cdot a)$, for all $y, z \in Q$, so the triple

$$T_1 = (L_a^{(\cdot)}, R_a^{(\cdot)}, L_a^{(\cdot)} R_a^{(\cdot)})$$

is an autotopism of (Q, \cdot) . For each $a \in M^{(\cdot)} = M_r^{(\cdot)}$ we have $(za \cdot y)a = z(a \cdot ya), \forall y, z \in Q$, so

$$(R_a^{(\cdot)-1}, L_a^{(\cdot)} R_a^{(\cdot)}, R_a^{(\cdot)})$$

is an autotopism of (Q, \cdot) as well, hence the triple

$$T_2 = (R_a^{(\cdot)}, R_a^{(\cdot)-1} L_a^{(\cdot)-1}, R_a^{(\cdot)-1})$$

is an autotopism of (Q, \cdot) . As T_1 and T_2 are autotopisms of (Q, \cdot) we get that, for all $U_i \in H$ there exists $V_i, W_i \in H$, such that

$$U_i(y) \cdot V_i(z) = W_i(y \cdot z),$$

 $\begin{array}{l} \forall y,z \in Q. \text{ So, letting } V = V_1 V_2 ... V_n \text{ and } W = W_1 W_2 ... W_n, \text{ we obtain:} \\ W(y \cdot z) = W_1 W_2 ... W_n(y \cdot z) = W_1 W_2 ... W_{n-1}(U_n(y) \cdot V_n(z)) = ... = \\ U_1 U_2 ... U_n(y) \cdot V_1 V_2 ... V_n(z) = U(y) \cdot V(z), \text{ for all } y, z \in Q, \text{ so} \end{array}$

$$U(y) \cdot V(z) = W(y \cdot z), \tag{2}$$

for all $y, z \in Q$. Let U be a inner mapping of $M^{(\cdot)}$, then U(e) = e, where e is the unit of (Q, \cdot) . Taking y = e in (2) we obtain V = W, so $U(y) \cdot V(z) = V(y \cdot z)$, for all $y, z \in Q$. Taking z = e in the last equality we have $U(y) \cdot V(e) = V(y)$, for all $y \in Q$. Denoting V(e) = u, we obtain that $V = R_u^{(\cdot)}U$, so the triple $T = (U, R_u^{(\cdot)}U, R_u^{(\cdot)}U)$ is an autotopism of (Q, \cdot) , which implies that U is a right pseudoautomorphism of the loop (Q, \cdot) , with the companion u = V(e). \Box

References

- R. H. Bruck. Pseudo-Automorphisms and Moufang Loops. Proceedings of the American Mathematical Society 3, no. 1 (1952), pp. 66–72.
- [2] D. A. Robinson. Bol loops. Ph.D. Thesis. University of Wisconsin, Madison, Wisconsin, 1964.
- [3] I. Grecu, P. Sârbu. Asupra parții Moufang în buclele medii Bol. Materialele Conferinței "Interferențe universitare - Integrare prin cercetare şi inovare". Chişinău, Universitatea de Stat din Moldova, 25-26 septembrie, 2012, pp. 183–186.
- [4] V. Gwaramija. On a class of loops. (Russian) Uch. Zapiski GPI. 375 (1971), pp. 25–34.
- [5] M. Greer, M. Kinyon. Pseudoautomorphisms of Bruck loops and their generalizations. Commentationes Mathematicae Universitatis Carolinae, 53, no. 3 (2012), pp. 383–389.

Ion Grecu

Moldova State University Email: iongrecu21@gmail.com