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Stochastic Games on Markov Processes
with Final Sequence of States

Alexandru Lazari

Abstract. In this paper a class of stochastic games, defined on Markov processes
with final sequence of states, is investigated. In these games each player, knowing the
initial distribution of the states, defines his stationary strategy, represented by one
proper transition matrix. The game is started by first player and, at every discrete
moment of time, the stochastic system passes to the next state according to the stra-
tegy of the current player. After the last player, the first player acts on the system
evolution and the game continues in this way until, for the first time, the given final
sequence of states is achieved. The player who acts the last on the system evolution
is considered the winner of the game. In this paper we prove that the distribution of
the game duration is a homogeneous linear recurrence and we determine the initial
state and the generating vector of this recurrence. Based on these results, we develop
polynomial algorithms for determining the main probabilistic characteristics of the
game duration and the win probabilities of players. Also, using the signomial and
geometric programming approaches, the optimal cooperative strategies that minimize
the expectation of the game duration are determined.

Mathematics subject classification: 65C40, 60J22, 90C40, 91A15, 91A50.
Keywords and phrases: Markov Process, Final Sequence of States, Game Duration,
Win Probability, Homogeneous Linear Recurrence, Generating Function.

1 Introduction and Problem Formulation

Let L be a discrete stochastic system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N, the state of the system is v(t) ∈ V . The
system L starts its evolution from the state v with the probability p∗(v), for all
v ∈ V , where

∑
v∈V

p∗(v) = 1.

Also, the transition from one state u ∈ V to another state v ∈ V is performed
according to the probability p(u, v) ∈ [0, 1] such that

∑
v∈V

p(u, v) = 1, ∀u ∈ V .

Additionally we assume that a sequence of states X = (x1, x2, . . . , xm) ∈ V m is
given and the stochastic system stops transitions as soon as the states x1, x2, . . . , xm

are reached consecutively in given order. The time T when the system stops is called
evolution time of the system L with given final sequence of states X.

The stochastic system L, described above, represents a Markov process with
final sequence of states X. Several interpretations of these Markov processes were
analyzed in 1981 by Leo J. Guibas and Andrew M. Odlyzko in [10] and by G. Zbaganu
in 1992 in [9]. Various problems, related to such systems, have been studied in [1]–[6].
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Also, in these papers, polynomial algorithms for determining the main probabilistic
characteristics (expectation, variance, mean square deviation, n-order moments) of
evolution time of the given stochastic system L were proposed.

Next, in this paper, a generalization of this problem is studied. The following
game is considered. Initially, each player P` defines his stationary strategy, repre-
sented by one transition matrix (p(`)(u, v))u,v∈V , ` = 0, r − 1. The initial distribution
of states is established according to the given distribution (p∗(v))v∈V .

The game is started by first player P0. At every moment of time, the stochastic
system passes consecutively to the next state according to the strategy of the current
player. After the last player Pr−1, the first player P0 acts on the system evolution
and the game continues in this way until the given final sequence of states X is
achieved. The player PTmod r who acts the last on the system evolution is considered
the winner of the game.

Our goal is to study the duration T of this game, knowing the initial distribu-
tion of states p∗(`) = (p∗(`)(v))v∈V , the stationary strategy P (`) = (p(`)(u, v))u,v∈V

of each player P`, ` = 0, r − 1, and the final sequence of states X of the stochastic
system L. We will prove that the distribution of the game duration T is a homo-
geneous linear recurrence ([2], [7]) and we will develop a polynomial algorithm to
determine the initial state and the generating vector of this recurrence. Having the
generating vector and the initial state of the recurrence, we can use the related algo-
rithm from [2], which was mentioned above, for determining the main probabilistic
characteristics of the game duration. Also, based on these results, we will show how
to determine the win probabilities of players.

2 Scientific Prerequisites

The developed algorithms for probabilistic characterization of the game dura-
tion and for determining the win probabilities of players are based on the theory of
homogeneous linear recurrences.

2.1 Main Properties of Homogeneous Linear Recurrences

In this section we remind several properties of these recurrences, proved and
described in [1], [2] and [6], that will be helpful in the following analysis from this
paper.

The sequence a = {an}∞n=0 represents a homogeneous linear m-recurrence on the

set K if ∃q = (qk)m−1
k=0 ∈ Km such that an =

m−1∑
k=0

qkan−1−k, ∀n ≥ m, where q is

the generating vector and I
[a]
m = (an)m−1

n=0 is the initial state of the sequence a. The
recurrence a is called non-degenerate when |qm−1| 6= 0 and degenerate otherwise.
Also, a is a homogeneous linear recurrence on the set K if ∃m ∈ N∗ such that a is
a homogeneous linear m-recurrence on the set K.

We denote by Rol[K] (respectively Rol[K][m]) the set of non-degenerate ho-
mogeneous linear (m-)recurrences on the set K. The set G[K](a) (respectively
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G[K][m](a)) represents the set of generating vectors (of length m) of the sequence
a ∈ Rol[K] (respectively a ∈ Rol[K][m]).

The function G[a](z) =
∞∑

n=0
anzn represents the generating function of the se-

quence a = (an)∞n=0 and the function G
[a]
t (z) =

t−1∑
n=0

anzn represents the partial

generating function of order t of the sequence a. We consider the unit characteris-
tic polynomial H

[q]
m (z) = 1− zG

[q]
m (z). For an arbitrary non-zero α, the polynomial

H
[q]
m,α(z) = αH

[q]
m (z) represents a characteristic polynomial of the sequence a of or-

der m. We denote by H[K](a) (respectively H[K][m](a)) the set of characteristic
polynomials (of order m) of the sequence a ∈ Rol[K] (respectively a ∈ Rol[K][m]).

In the case when we will operate with arbitrary recurrence (not obligatory non-
degenerate) for the corresponding set we will use the similar notation and will specify
it with the mark ”∗”, i.e. we will denote respectively sets by Rol∗[K][m], Rol∗[K],
G∗[K][m](a), G∗[K](a), H∗[K][m](a) and H∗[K](a).

The sequence a ∈ Rol∗[K] is called m-minimal on the set K if a ∈ Rol∗[K][m]
and a /∈ Rol∗[K][t], for all t < m. The number m is called the dimension of sequence
a on the set K (denoted dim[K](a) = m).

Next, we will consider a subfield K of the field of complex numbers C and
a = {an}∞n=0 ⊆ C. The following Theorem allows us to determine the generating
function G[a](z) of an arbitrary homogeneous linear recurrence a on the set C.

Theorem 1. If a ∈ Rol∗[C][m] and q ∈ G∗[C][m](a), then

G[a](z) =
G

[a]
m (z)−

m−1∑
k=0

qkz
k+1G

[a]
m−1−k(z)

H
[q]
m (z)

.

Also the inverse theorem is true:

Theorem 2. If G[a](z) =
A(z)
B(z)

is a rational fraction, B(z) = 1 − z
m−1∑
k=0

qkz
k and

qk ∈ K, k = 0,m− 1, then a ∈ Rol∗[K][t + 1] and B(z) ∈ H∗[K][t + 1](a), where
t = deg(A(z)).

The function L.C.M. means the least common multiple of respective polynomials.
An algebraic property of a linear combination is:

Theorem 3. Let a(j) ∈ Rol[K], Pj(z) ∈ H[K](a(j)), αj ∈ C, j = 1, t. Then

a =
t∑

k=1

αka
(k) ∈ Rol[K] and P (z) = L.C.M.(P1(z), P2(z), . . . , Pt(z)) ∈ H[K](a).

A homogeneous linear recurrence property of polynomials is:

Theorem 4. For each polynomial P (X) ∈ C[X] of degree deg(P (X)) = m,
c = (P (n))∞n=0 ∈ Rol[R][m + 1] and Q(z) = (1− z)m+1 ∈ H[R][m + 1](c).
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The following Theorem shows us that the product of a homogeneous linear m-
recurrence and a geometric progression is also a homogeneous linear m-recurrence:

Theorem 5. We consider a ∈ Rol[K][m], b ∈ Rol[K][1], (q0) ∈ G[K][1](b) and
P (z) ∈ H[K][m](a). Then ab = (anbn)∞n=0 ∈ Rol[K][m] and P (q0z) ∈ H[K][m](ab).

The direct formula for homogeneous linear recurrences is given by the following
theorem:

Theorem 6. Let a ∈ Rol[K][m], q ∈ G[K][m](a), H
[q]
m,α(z) =

p−1∏
k=0

(z − zk)sk ,

zi 6= zj, ∀i 6= j. Then an = I
[a]
m · ((B[a])T )−1 · (β[a]

n )T , ∀n ∈ N, where

β
[a]
i =

(
τij

zi
k

)

k=0,p−1, j=0,sk−1

, τij =
{

ij , if i2 + j2 6= 0
1, if i = j = 0

, i ∈ N, B[a] = (β[a]
i )m−1

i=0 .

The dimension and the unique minimal generating vector of the sequence
a ∈ Rol∗[C][m] can be determined by using the following minimization method:

Theorem 7. If a ∈ Rol∗[C][m] is a sequence with at least one non-zero element,
then dim[C](a) = R and q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a), where

R = rank(A[a]
m ), A[a]

n = (ai+j)i,j=0,n−1, f [a]
n = (ak)k=n,2n−1,∀n ≥ 1

and the vector x = (qR−1, qR−2, . . . , q0) represents the unique solution of the system
A

[a]
R xT = (f [a]

R )T .

2.2 Subsequences of Homogeneous Linear Recurrences

Next, we will extend these properties with the following new results related to
homogeneous linear recurrences. These results will be very important in the process
of probabilistic characterization of the game duration and determination of the win
probabilities of players.

The following two theorems analyze subsequences of degenerate and non-
degenerate homogeneous linear recurrences.

Theorem 8. If a ∈ Rol[C][m], then b = (acn+t)∞n=0 ∈ Rol[C][m], ∀c, t ∈ N, with a
generating vector that does not depend on t.

Proof. Let a ∈ Rol[C][m] with generating vector u ∈ G[C][m](a). We consider all
distinct roots z0, z1, . . . , zp−1 (of corresponding multiplicity s0, s1, . . . , sp−1) of
the characteristic polynomial H

[u]
m (z). Let b = (acn+t)∞n=0, where c and t are two

fixed nonnegative integers.
We consider the decomposition x[a] = I

[a]
m ((B[a])T )−1 = (Ak,j)k=0,p−1, j=0,sk−1.

Using Theorem 6, we have

an = x[a](β[a]
n )T =

p−1∑

k=0

sk−1∑

j=0

Ak,j

nj

zn
k

, n = 0,∞,
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that implies

bn = acn+t =
p−1∑

k=0

sk−1∑

j=0

Ak,j

(cn + t)j

zcn+t
k

=
p−1∑

k=0

sk−1∑

j=0

αkjthkjtc(n),

where αkjt =
Ak,j

zt
k

and hkjtc(n) =
(cn + t)j

(zc
k)

n
, k = 0, p− 1, j = 0, sk − 1, n ∈ N.

Since hjtc = ((cn + t)j)∞n=0 is a sequence of polynomials of degree j, ap-
plying Theorem 4, we have hjtc ∈ Rol[C][j + 1] with characteristic polynomial

(1 − z)j+1 ∈ H[C](hjtc), j = 0, sk − 1. Also, because gkc =

(
1

(zc
k)

n

)

n=0,∞
is a

geometric progression with common ratio
1
zc
k

, we have gkc ∈ Rol[C][1] with generat-

ing vector

(
1
zc
k

)
∈ G[C](gkc), k = 0, p− 1. From these relations, applying Theorem

5, we obtain hkjtc = (hkjtc(n))n=0,∞ = hjtc · gkc ∈ Rol[C][j + 1] with characteristic

polynomial

(
1− z

zc
k

)j+1

∈ H[C](hkjtc), k = 0, p− 1, j = 0, sk − 1.

Next, using Theorem 3, for k = 0, p− 1 we have

fktc =
sk−1∑

j=0

αkjthkjtc ∈ Rol[C][sk]

with characteristic polynomial

L.C.M.








(
1− z

zc
k

)j+1

| j = 0, sk − 1






 =

(
1− z

zc
k

)sk

∈ H[C](fktc).

Since bn =
p−1∑
k=0

fktc(n), where fktc = (fktc(n))∞n=0, applying Theorem 3, we obtain

b ∈ Rol[C][m] with characteristic polynomial

L.C.M.

({(
1− z

zc
k

)sk

| k = 0, p− 1

})
=

p−1∏

k=0

(
1− z

zc
k

)sk

∈ H[C][m](b).

It is easy to observe that this characteristic polynomial does not depend on t.
So, also the corresponding generating vector does not depend on t. In conclusion,
∀c, t ∈ N, we have b = (acn+t)∞n=0 ∈ Rol[C][m] with a generating vector that does
not depend on t.

Theorem 9. If a ∈ Rol∗[C][m], then b = (acn+t)∞n=0 ∈ Rol∗[C][m], ∀c, t ∈ N, with
a generating vector that does not depend on t.
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Proof. Let a ∈ Rol∗[C][m] with generating vector u = (uk)m−1
k=0 ∈ G∗[C][m](a). Let

s be the degree of the characteristic polynomial H
[u]
m (z).

We consider the subsequence α = (αn)∞n=0, where αn = an+m−s, ∀n ≥ 0. It
is easy to observe that α ∈ Rol[C][s] with generating vector u(s) ∈ G[C][s](α),
where u(s) = (uk)s−1

k=0. Applying Theorem 8, we have β = (βn)∞n=0 ∈ Rol[C][s],
∀c, t ∈ N, with a generating vector v(s) = (vk)s−1

k=0 ∈ G[C][s](β) that does not depend
on t, where βn = αcn+t = acn+t+m−s, ∀n ≥ 0. From this relation, we obtain
that b = (bn)∞n=0 ∈ Rol∗[C][m] with a generating vector v = (vk)m−1

k=0 ∈ G∗[C][m](b)
that does not depend on t, where bn = acn+t, ∀n ≥ 0, ∀c, t ∈ N and vk = 0,
k = s,m− 1.

2.3 Five-Dimensional Homogeneous Linear Recurrences

The following theorem analyzes homogeneous linear recurrences on the set of
squared matrices with squared matrices as components:

Theorem 10. If a ⊆ (Cr)t and a ∈ Rol∗[Mt(Mr(K))][m], then a ∈ Rol∗[K][mtr].

Proof. Let a ⊆ (Cr)t, a ∈ Rol∗[Mt(Mr(K))][m] and q ∈ G∗[Mt(Mr(K))][m]. We

have an =
m−1∑
k=0

q(k)an−1−k, ∀n ≥ m, where a = (an)∞n=0 and q = (q(k))m−1
k=0 .

We consider the set Λ(n) = {0, 1, . . . , n−1}, ∀n ∈ N. Let an = (ani)i∈Λ(t), where
ani = (anij)j∈Λ(r), i ∈ Λ(t), ∀n ∈ N. We obtain the recurrence relation

ani =
m−1∑

k=0

t−1∑

s=0

q
(k)
is an−1−k,s, i ∈ Λ(t), ∀n ≥ m,

where q(k) = (q(k)
is )i,s∈Λ(t), k ∈ Λ(m). This formula implies the recurrence relation

anij =
m−1∑

k=0

t−1∑

s=0

r−1∑

`=0

q
(k)
isj`an−1−k,s,`, i ∈ Λ(t), j ∈ Λ(r),

where q
(k)
is = (q(k)

isj`)j,`∈Λ(r), i, s ∈ Λ(t).

Let a(i,j) = (anij)∞n=0 and qisj` = (q(k)
isj`)

m−1
k=0 , i, s ∈ Λ(t), j, ` ∈ Λ(r). We will

determine the generating function of the sequence a(i,j), i ∈ Λ(t), j ∈ Λ(r).

G[a(i,j)](z) =
∞∑

n=0

anijz
n =

∞∑
n=m

zn
m−1∑

k=0

t−1∑

s=0

r−1∑

`=0

q
(k)
isj`an−1−k,s,` +

m−1∑

n=0

anijz
n =

= G[a(i,j)]
m (z) +

m−1∑

k=0

t−1∑

s=0

r−1∑

`=0

q
(k)
isj`z

k+1
∞∑

n=m

an−1−k,s,`z
n−1−k =

= G[a(i,j)]
m (z) +

m−1∑

k=0

zk+1
t−1∑

s=0

r−1∑

`=0

q
(k)
isj`

∞∑

n=m−1−k

ans`z
n =
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= G[a(i,j)]
m (z) +

m−1∑

k=0

zk+1
t−1∑

s=0

r−1∑

`=0

q
(k)
isj`

(
G[a(s,`)](z)−G

[a(s,`)]
m−1−k(z)

)
=

=

(
G[a(i,j)]

m (z)−
m−1∑

k=0

zk+1
t−1∑

s=0

r−1∑

`=0

q
(k)
isj`G

[a(s,`)]
m−1−k(z)

)
+

+z
t−1∑

s=0

r−1∑

`=0

G[a(s,`)](z)
m−1∑

k=0

q
(k)
isj`z

k =

= Fij(z) + z
t−1∑

s=0

r−1∑

`=0

G
[qisj`]
m G[a(s,`)](z),

where Fij(z) = G
[a(i,j)]
m (z)−

m−1∑
k=0

zk+1
t−1∑
s=0

r−1∑
`=0

q
(k)
isj`G

[a(s,`)]
m−1−k(z).

So, for i ∈ Λ(t) and j ∈ Λ(r), we have

G[a(i,j)](z)− z
∑

s∈Λ(t), `∈Λ(r)

G
[qisj`]
m G[a(s,`)](z) = Fij(z).

If we denote xij = G[a(i,j)](z), i ∈ Λ(t), j ∈ Λ(r), we obtain the following system of
tr linear equations with tr unknown variables:

xij(z)− z
∑

s∈Λ(t), `∈Λ(r)

G
[qisj`]
m xs,`(z) = Fij(z), i ∈ Λ(t), j ∈ Λ(r).

In matrix form, this system can be written as follows:

W (z)x(z) = F (z),

where
x(z) = (xij(z))(i,j)∈Λ(t)×Λ(r),

F (z) = (Fij(z))(i,j)∈Λ(t)×Λ(r),

Q = ((q(k)
(i,j),(s,`))(i,j),(s,`)∈Λ(t)×Λ(r))

m−1
k=0 ,

q
(k)
(i,j),(s,`) = q

(k)
isj`, i, s ∈ Λt, j, ` ∈ Λr,

W (z) = I − zG[Q]
m (z).

So, we have x(z) = W−1(z)F (z), ∀z ∈ D\F , where D is the domain of con-
vergence of G[a](z) and F is the set of roots of the polynomial |W (z)|. From this
relation, we can conclude that xij(z) are rational fractions, ∀i ∈ Λ(t), ∀j ∈ Λ(r).
Using Theorem 2, we have that a(i,j) ∈ Rol∗[K][mtr], ∀i ∈ Λ(t), ∀j ∈ Λ(r), which
implies also a ∈ Rol∗[K][mtr].
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3 Game Duration

In this section we will determine the distribution law of the game duration T .
We will prove that this distribution is a homogeneous linear recurrence.

3.1 Determining the Distribution of the Game Duration

Initially, we consider the sets Xj = {xj} and Xj = V \Xj , j = 1,m. Also, we

consider the notations πj = p∗(xj), π
(`)
ij = p(`)(xi, xj) and ω

(`)
j =

j∏
k=3

π
(` ⊕(k−3))
k−1, k , for

each i, j = 1,m and ` = 0, r − 1, where c⊕ d = (c + d) mod r, ∀c, d ∈ Z.
If for each ` = 0, r − 1 there exists an index j` ∈ {2, . . . , m} such that

π
(`⊕(j`−2))
j`−1, j`

= 0, then the evolution of the stochastic system is not finite, i.e. the
game duration is unlimited. In other words, in this case we have an = 0, ∀n ∈ N
and lim

n→∞ an = 1. In conclusion, also the n-order moments of the game duration are
infinite. Next, we investigate the rest of cases, when the game duration is finite.

We consider ∀n ∈ Z. Let be S(V ) = {A | A ⊆ V }. Denote by P
(`)
Φ (n) the

probability that T = n, v(j) ∈ Φj , j = 0, t− 1 and the player P` acts first, supposing
that the initial state of the system is known, for all Φ = (Φj)t−1

j=0 ∈ (S(V ))t, t ∈ N
and ` = 0, r − 1. We introduce the following functions on Z, k = 0,m, ` = 0, r − 1:

α
(`)
k (n) = P

(`)

(X1,X2,...,Xk−1,Xk)
(n),

β
(`)
k (n) = P

(`)
(X1,X2,...,Xk)(n),

γ
(`)
k (n) = P

(`)
(X2,X3,...,Xk)(n).

(1)

Also, we consider the sets

Ts = {s + 1} ∪ {t ∈ {2, 3, . . . , s} | xt−1+j = xj , j = 1, s + 1− t}, s = 1,m.

The minimal elements from these sets are

ts = min
k∈Ts

k, s = 1,m. (2)

The value ts represents the auto superposition level of the sequence (x1, x2, . . . , xs),
i.e. ts is the position in the sequence (x1, x2, . . . , xs) starting with which, if we
overlap the same sequence, the superposed elements are equal.

Initially, we study the case m ≥ 2. We have

β
(`)
k (n) = P

(`)
(X1,X2,...,Xk)(n) = P (`)

n −
k∑

j=1

α
(`)
j (n), k = 0,m, ` = 0, r − 1, (3)

where P
(`)
n = P

(`)
( ) (n), ` = 0, r − 1.

Directly from definition we obtain

γ
(`)
1 (n) = P (`)(n), ` = 0, r − 1, ∀n ∈ Z. (4)
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Let be s ≥ 2. For ts ≤ s and ` = 0, r − 1 we have

γ(`)
s (n) = P

(`)
(X2,X3,...,Xs)

(n) = π
(`)
2,3π

(` ⊕1)
3,4 . . . π

(` ⊕(ts−3))
ts−1, ts

P
(` ⊕(ts−2))
(Xts ,...Xs)

(n− ts + 2) =

= ω
(`)
ts P

(` ⊕(ts−2))
(X1,...,Xs+1−ts )(n− ts + 2) = ω

(`)
ts β

(` ⊕(ts−2))
s+1−ts

(n− ts + 2) =

= ω
(`)
ts


P (` ⊕(ts−2))(n− ts + 2)−

s+1−ts∑

j=1

α
(` ⊕(ts−2))
j (n− ts + 2)


 (5)

and in the case ts = s + 1, for ` = 0, r − 1, we obtain

γ(`)
s (n) = P

(`)
(X2,X3,...,Xs)

(n) = ω(`)
s

∑

y∈V

p(` ⊕(s−2))(xs, y)P (` ⊕(s−1))
({y}) (n− s + 1) =

=
∑

y∈V

ω(`)
s p(` ⊕(s−2))(xs, y)P (` ⊕(s−1))

({y}) (n− ts + 2). (6)

Next, we determine the values α
(`)
k (n), k = 1,m, ` = 0, r − 1. We have

α
(`)
1 (n) = P

(`)

(X1)
(n) =

∑

x∈V \{x1}
P

(`)
({x})(n) =

=
∑

x∈V \{x1}

∑

y∈V

P
(`)
({x}, {y})(n) =

∑

x∈V \{x1}

∑

y∈V

p(`)(x, y)P (` ⊕1)
{y}) (n− 1) =

=
∑

y∈V

P
(` ⊕1)
{y}) (n− 1)

∑

x∈V \{x1}
p(`)(x, y) =

∑

y∈V

ψ
(`)
1 (y)P (` ⊕1)

({y}) (n− 1), (7)

where
ψ

(`)
1 (y) =

∑

x∈V \{x1}
p(`)(x, y), ∀y ∈ V. (8)

For k = 2 we obtain

α
(`)
2 (n) = P

(`)

(X1, X2)
(n) =

∑

y 6=x2

P
(`)
(X1, {y})(n) =

∑

y 6=x2

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1) (9)

and for k ≥ 3 we have

α
(`)
k (n) = P

(`)

(X1,X2,...,Xk−1,Xk)
(n) = π

(`)
1,2P

(` ⊕1)

(X2,X3,...,Xk−1,Xk)
(n− 1) =

= π
(`)
1,2

(
P

(` ⊕1)
(X2,X3,...,Xk−1)(n− 1)− P

(` ⊕1)
(X2,X3,...,Xk)(n− 1)

)
=

= π
(`)
1,2

(
γ

(` ⊕1)
k−1 (n− 1)− γ

(` ⊕1)
k (n− 1)

)
. (10)

From the following equality

P (`)(n) =
m∑

k=1

α
(`)
k (n) = α

(`)
1 (n) + α

(`)
2 (n) +

m∑

k=3

α
(`)
k (n), ∀n ≥ m, (11)
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using the relations (3), (9) and (10), we obtain the formula

P
(`)
X1

(n) = β
(`)
1 (n) = P (`)(n)− α

(`)
1 (n) = α

(`)
2 (n) +

m∑

k=3

α
(`)
k (n) =

=
∑

y 6=x2

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1) +

m∑

k=3

π
(`)
1,2

(
γ

(` ⊕1)
k−1 (n− 1)− γ

(` ⊕1)
k (n− 1)

)
=

=
∑

y 6=x2

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1) + π

(`)
1,2

(
γ

(` ⊕1)
2 (n− 1)− γ(` ⊕1)

m (n− 1)
)

=

=
∑

y∈V

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1)− π

(`)
1,2γ

(` ⊕1)
m (n− 1), ∀n ≥ m. (12)

For x 6= x1, we have

P
(`)
({x})(n) =

∑

y∈V

p(`)(x, y)P (` ⊕1)
({y}) (n− 1). (13)

According to the relations (4)− (10), using the mathematical induction, we can
prove that there exist real coefficients u

(i)
jk`(y) and v

(i)
jk`(y), j = 1,m, k = 0, j − 1,

y ∈ V , ` = 0, r − 1, i = 0, r − 1 such that, for all n ∈ Z, the following relations hold:




α
(`)
j (n) =

r−1∑
i=0

j−1∑
k=0

∑
y∈V

u
(i)
jk`(y) P

(i)
({y})(n− 1− k),

γ
(`)
j (n− 1) =

r−1∑
i=0

j−1∑
k=0

∑
y∈V

v
(i)
jk`(y) P

(i)
({y})(n− 1− k).

(14)

For n < m − 1 these relations are obvious and are true for all reals u
(i)
jk`(y) and

v
(i)
jk`(y). We should prove these relations for n ≥ m, using mathematical induction

method on parameter j.
For j = 1 we have

α
(`)
1 (n) =

∑

y∈V

ψ
(`)
1 (y)P (` ⊕1)

({y}) (n− 1) =

=
r−1∑

i=0

0∑

k=0

∑

y∈V

u
(i)
1k`(y)P (i)

({y})(n− 1− k) =
r−1∑

i=0

∑

y∈V

u
(i)
10`(y)P (i)

({y})(n− 1),

where

u
(i)
10`(y) =

{
ψ

(`)
1 (y), if i = ` ⊕ 1

0, if i 6= ` ⊕ 1
(15)

and

γ
(`)
1 (n− 1) = P (`)(n− 1) =

∑

y∈V

P
(`)
({y})(n− 1) =

r−1∑

i=0

∑

y∈V

v
(i)
10`(y)P (i)

({y})(n− 1),
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where

v
(i)
10`(y) =

{
1, if i = `
0, if i 6= `.

(16)

For j = 2 we obtain

α
(`)
2 (n) =

∑

y 6=x2

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1) =

r−1∑

i=0

1∑

k=0

∑

y∈V

u
(i)
2k`(y)P (i)

({y})(n− 1− k),

where

u
(i)
20`(y) =





0, if y = x2

0, if y 6= x2 and i 6= ` ⊕ 1
p(`)(x1, y), if y 6= x2 and i = ` ⊕ 1

(17)

and
u

(i)
21`(y) = 0, ∀y ∈ V. (18)

Also, we have

γ
(`)
2 (n− 1) = P

(`)
(X2)(n− 1) =

r−1∑

i=0

1∑

k=0

∑

y∈V

v
(i)
2k`(y)P (i)

({y})(n− 1− k),

where

v
(i)
20`(y) =





0, if y 6= x2

0, if y = x2 and i 6= `
1, if y = x2 and i = `

(19)

and
v

(i)
21`(y) = 0, ∀y ∈ V. (20)

So, the relations are true for ∀j ∈ {1, 2}. Let these relations be true for
j = 1, s− 1, s ≥ 3, ∀n < τ and ∀y ∈ V . We have

α(`)
s (τ) = π

(`)
1,2

(
γ

(` ⊕1)
s−1 (τ − 1)− γ(` ⊕1)

s (τ − 1)
)

=

= π
(`)
1,2




r−1∑

i=0

s−2∑

k=0

∑

y∈V

v
(i)
s−1,k,`(y)P (i)

({y})(τ − 1− k)−

−
r−1∑

i=0

s−1∑

k=0

∑

y∈V

v
(i)
s,k,`(y)P (i)

({y})(τ − 1− k)


 =

=
r−1∑

i=0

s−1∑

k=0

∑

y∈V

u
(i)
sk`(y)P (i)

({y})(τ − 1− k),

where

u
(i)
sk`(y) =

{
π

(`)
1,2(v

(i)
s−1,k,`(y)− v

(i)
sk`(y)), if 0 ≤ k ≤ s− 2

−π
(`)
1,2v

(i)
s,s−1,`(y), if k = s− 1.

(21)
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For ts ≤ s we obtain

γ(`)
s (τ − 1) = ω

(`)
ts


∑

y∈V

P
(` ⊕(ts−2))
({y}) (τ − ts + 1)−

s+1−ts∑

j=1

α
(` ⊕(ts−2))
j (τ − ts + 1)


 =

= ω
(`)
ts


∑

y∈V

P
(` ⊕(ts−2))
({y}) (τ − ts + 1)−

−
s+1−ts∑

j=1

r−1∑

i=0

j−1∑

k=0

∑

y∈V

u
(i)
j,k,` ⊕(ts−2)(y)P (i)

({y})(τ − ts − k)


 =

= ω
(`)
ts


∑

y∈V

P
(` ⊕(ts−2))
({y}) (τ − 1− (ts − 2))−

−
r−1∑

i=0

s−1∑

k=ts−1

∑

y∈V

P
(i)
({y})(τ − 1− k)

s+1−ts∑

j=k−ts+2

u
(i)
j,k−ts+1,` ⊕(ts−2)(y)


 =

=
r−1∑

i=0

s−1∑

k=0

∑

y∈V

v
(i)
sk`(y)P (i)

({y})(τ − 1− k),

where

v
(i)
sk`(y) =





0, if 0 ≤ k ≤ ts − 3

0,
if k = ts − 2 and
i 6= ` ⊕ (ts − 2)

ω
(`)
ts ,

if k = ts − 2, and
i = ` ⊕ (ts − 2)

−ω
(`)
ts

s+1−ts∑
j=k−ts+2

u
(i)
j, k−ts+1, ` ⊕(ts−2)(y), if ts − 1 ≤ k ≤ s− 1

(22)

and for ts = s + 1 we have

γ(`)
s (τ − 1) =

∑

y∈V

ω(`)
s p(` ⊕(s−2))(xs, y)P (` ⊕(s−1))

({y}) (τ − 1− (ts − 2)) =

=
r−1∑

i=0

j−1∑

k=0

∑

y∈V

v
(i)
sk`(y)P (i)

({y})(τ − 1− k),

where

v
(i)
sk`(y) =





0, if 0 ≤ k ≤ s− 2
0, if k = s− 1 and i 6= ` ⊕ (s− 1)
ω

(`)
s p(` ⊕(s−2))(xs, y), if k = s− 1 and i = ` ⊕ (s− 1).

(23)
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So, we proved the truth of the relations (14), obtaining the formulas (15)− (23)
for determining coefficients of the decompositions. Substituting the decompositions
(14) in the relations (12) and (13), we have

P
(`)
(X1)(n) =

∑

y∈V

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1)− π

(`)
1,2γ

(` ⊕1)
m (n− 1) =

=
∑

y∈V

p(`)(x1, y)P (` ⊕1)
({y}) (n− 1)− π

(`)
1,2

r−1∑

i=0

m−1∑

k=0

∑

y∈V

v
(i)
m, k, ` ⊕1(y)P (i)

({y})(n− 1− k) =

=
r−1∑

i=0

m−1∑

k=0

∑

y∈V

w
(i)
k,`(x1, y)P (i)

({y})(n− 1− k)

and, for all x 6= x1,

P
(`)
({x})(n) =

∑

y∈V

p(`)(x, y)P (` ⊕1)
({y}) (n− 1) =

r−1∑

i=0

m−1∑

k=0

∑

y∈V

w
(i)
k,`(x, y)P (i)

({y})(n− 1− k),

where

w
(i)
k` (x, y) =





p(`)(x1, y)− π
(`)
1,2v

(` ⊕1)
m,0,` ⊕1(y), if x = x1, k = 0, i = ` ⊕ 1

−π
(`)
1,2v

(i)
m,0,` ⊕1(y), if x = x1, k = 0, i 6= ` ⊕ 1

−π
(`)
1,2v

(i)
m,k,` ⊕1(y), if x = x1, 1 ≤ k ≤ m− 1

p(`)(x, y), if x 6= x1, k = 0, i = ` ⊕ 1
0, if x 6= x1, k = 0, i 6= ` ⊕ 1
0, if x 6= x1, 1 ≤ k ≤ m− 1

(24)

Thus, we obtained the recurrence relation

P
(`)
({x})(n) =

r−1∑

i=0

m−1∑

k=0

∑

y∈V

w
(i)
k` (x, y)P (i)

({y})(n− 1− k), ∀x ∈ V, ∀n ≥ m, ` = 0, r − 1.

So, we have

P({x})(n) =
m−1∑

k=0

∑

y∈V

Wk(x, y)P({y})(n− 1− k), ∀x ∈ V, ∀n ≥ m,

where Wk(x, y) = (w(i)
k` (x, y))`, i=0, r−1, P({x})(n) = (P (`)

({x})(n))` =0, r−1, ∀x, y ∈ V ,
k = 0,m− 1. This recurrence relation can be written in the form

hn =
m−1∑

k=0

Wkhn−1−k, ∀n ≥ m,
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where Wk = (Wk(x, y))x,y∈V and hn = ((P({x})(n))x∈V )T , k = 1,m, ∀n ∈ Z. From
this relation, we obtain that h = (hn)∞n=0 ∈ Rol∗[Mω(Mr(R))][m] with genera-
ting vector W = (Wk)m−1

k=0 ∈ G∗[Mω(Mr(R))][m](h). Using Theorem 10, we have
h ∈ Rol∗[R][mrω], which implies that also

(
P

(`)
({x})(n)

)∞
n=0

∈ Rol∗[R][mrω], ∀x ∈ V, ` = 0, r − 1,

with the same generating vector. Since

a(`)(n) =
∑

x∈V

p∗(x)P (`)
({x})(n), ∀n ∈ N,

we have a(`) = (a(`)(n))∞n=0 ∈ Rol∗[R][mrω], ` = 0, r − 1, with the same generating
vector. Because the game is started by player P(0), then the distribution a of the
game duration T coincides with a(0), i.e. a = (an)∞n=0 ∈ Rol∗[R][mrω] with the same
generating vector.

Next, we will use only the relation a ∈ Rol∗[C][mrω], the minimal generating
vector being determined using the minimization method based on the matrix rank,
given by Theorem 7. So, according to this method, we have that the minimal
generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a) is obtained from the unique
solution x = (qR−1, qR−2, . . . , q0) of the system

A
[a]
R xT = (f [a]

R )T , (25)

where
f

[a]
R = (aR, aR+1, . . . , a2R−1), A[a]

n = (ai+j)i,j=0,n−1, ∀n ∈ N∗ (26)

and R is the rank of the matrix A
[a]
mrω.

For this, we need to have only the values ak, k = 0, 2mrω − 1. These values are
determined from the formula

ak = a
(0)
k , k = 0, 2mrω − 1, (27)

using the relations (3)− (13) and the initial conditions

an = a(`)
n = P (`)(n) = P

(`)
({x})(n) = 0, ∀x ∈ V, ` = 0, r − 1, n = 0,m− 2,

α
(`)
k (n) = 0, k = 1,m, n = 0,m− 1, ` = 0, r − 1,

P (`)(m− 1) = π
(`)
1,2w

(`+1)
m , a

(`)
m−1 = π1P

(`)(m− 1), ` = 0, r − 1,

P
(`)
({x1})(m− 1) = P (`)(m− 1), ` = 0, r − 1,

P
(`)
({x})(m− 1) = 0, ∀x ∈ V \{x1}, ` = 0, r − 1. (28)
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For the case m = 1 we have other formulas for determining the values of con-
ditional probabilities P

(`)
({x})(n), ` = 0, r − 1, ∀x ∈ V , ∀n ∈ N. It is easy to observe

that these values can be obtained using the following formulas:

P
(`)
(X1)(0) = 1, P

(`)
(X1)(n) = 0, ∀n ∈ N∗, ` = 0, r − 1,

P
(`)
({x})(0) = 0, P

(`)
({x})(n) =

∑

y∈V

p(`)(x, y)P (` ⊕1)
({y}) (n−1), ∀n ∈ N∗, ∀x ∈ V \{x1}. (29)

3.2 Describing the developed algorithm

In the previous subsection we theoretically grounded the following algorithm for
determining the main probabilistic characteristics (the distribution (P(T = n))∞n=0,
the expectation E(T ), the variance V(T ), the mean square deviation σ(T ) and the
k-order moments νk(T ), k = 1, 2, . . .) of the game duration T .

Algorithm 1.

Input: X = (x1, x2, . . . , xm) ∈ V m, πj , π
(`)
i,j , i, j = 1,m, ` = 0, r − 1;

Output: E(T ), V(T ), σ(T ), νk(T ), k = 1, t, t ≥ 2.

1. Determine the values ak, k = 0, 2mrω − 1, using the formula (27), the relations
(3)− (13) and the initial conditions (28)− (29);

2. Find the minimal generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[R][R](a) by
solving the system (25), taking into account the relation (26);

3. Consider the distribution a = (an)∞n=0 = (P(T = n))∞n=0 of the game duration
T as a homogeneous linear recurrence with the initial state I

[a]
R = (an)R−1

n=0 and
the minimal generating vector q = (qk)R−1

k=0 , determined at the steps 1 and 2;

4. Determine the expectation E(T ), the variance V(T ), the mean square deviation
σ(T ) and the k-order moments νk(T ), k = 1, t, of the game duration T by using
the corresponding algorithm from [2].

4 Win Probabilities

Another problem that is interesting for us is the determination of the win pro-
babilities of the players. For solving this problem, we will consider the given game
in more general case.

We consider a finite game Γ with r players P`, ` = 0, r − 1, who apply their own
stochastic strategy S`, 0 ≤ ` < r, in a given cyclic order (S0, S1, . . . , Sr−1, S0, S1, . . .).
Let T be the duration of the game Γ. The player PTmod r, who applies the last
strategy, is considered the winner of the game.
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Suppose that the distribution d = (dn)∞n=0 = (P(T = n))∞n=0 of the game dura-
tion T is a homogeneous linear recurrence, i.e. there exist m ∈ N∗ and the gener-

ating vector q = (qk)m−1
k=0 ∈ Cm, such that dn =

m−1∑
k=0

qkdn−1−k, ∀n ≥ m. We have

d ∈ Rol∗[C][m] and q ∈ G∗[C][m](d). Next, we will show how to determine the win
probability ω` for each player P`, ` = 0, r − 1.

If we consider the subsequence d(`) = (drn+`)∞n=0 of the sequence d, then we
have ω` = G[d(`)](1), ` = 0, r − 1. Using Theorem 8, we obtain d(`) ∈ Rol∗[C][m],
` = 0, r − 1, with a common generating vector.

The minimal generating vector of these sequences can be determined using the
minimization method based on matrix rank, given by Theorem 7, and the initial
states of these sequences can be obtained using the initial state and the generating
vector of the duration distribution d. Finally, the win probability ω` is obtained
applying the formula, given by Theorem 1, for z := 1 and a := d(`), ` = 0, r − 1.

5 Optimal Cooperative Strategies of the Players

Next, we consider that the distributions p∗ and p(`), ` = 0, r − 1, are not fixed.
So, we have the game Γ(p∗, p(0), p(1), . . . , p(r−1)) with final sequence of states X,
initial distribution of the states p∗ and strategies of players p(`), ` = 0, r − 1, for
every parameters p∗ and p(`), ` = 0, r − 1. The problem is to determine the optimal
distribution p∗ = p∗ and optimal strategies p(`) = p(`), ` = 0, r − 1, that mini-
mize the expectation of the game duration T (p∗, p(0), p(1), . . . , p(r−1))) for the game
Γ(p∗, p(0), p(1), . . . , p(r−1)).

Similar with results obtained in [3], the following theorems hold:

Theorem 11. The optimal initial distribution of the states is p∗, where p∗(x1) = 1
and p∗(x) = 0, ∀x ∈ V \{x1}.

Theorem 12. We consider the set of active final states X = {x1, x2, . . . , xm−1}, the
set of final transitions Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)} and the set of branch
states Z = {y ∈ X\{x1} | ∃x ∈ X, ∃z ∈ X ∪ {xm}, z 6= y : (x, y) ∈ Y , (x, z) ∈ Y }.
The optimal strategies p(`), ` = 0, r − 1, have the following properties:

1. p(`)(x, x1) = 1, if (x, x1) ∈ Y and (x, z) 6∈ Y , ∀z 6= x1;

2. p(`)(x, x1) = 1, ∀x 6∈ X;

3. p(`)(x, x1) > 0, ∀x ∈ Z and p(`)(x, x1) = 0 if (x, x1) 6∈ Y , x ∈ X\Z;

4. p(`)(x, y) = 0, if (x, y) 6∈ Y and y 6= x1;

5. p(`)(x, y) > 0, ∀(x, y) ∈ Y ;

6.
∑

(x,y)∈Y ∪{(x,x1)}
p(`)(x, y) = 1, ∀x ∈ X.
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Theorem 13. Let p = (p(0), p(1), . . . , p(r−1)). If δi,j(p) 6≡ 0, i, j = 1, 2, then the
optimal transition matrix can be determined solving the following geometric programs
with posynomial equality constraints:

E(T (p∗, p)) = d1d
−1
2 → min, (30)

subject to 



∑
(x,y)∈Y ∪{(x,x1)}

p(`)(x, y) = 1, ∀x ∈ X, ` = 0, r − 1

d−1
1,1d1 + d−1

1,1d1,2 = 1
d−1

2,1d2 + d−1
2,1d2,2 = 1

d−1
1,1δ1,1(p) = 1

d−1
1,2δ1,2(p) = 1

d−1
2,1δ2,1(p) = 1

d−1
2,2δ2,2(p) = 1

d1, d2, d1,1, d1,2, d2,1, d2,2 > 0
p(`)(x, y) > 0, ∀(x, y) ∈ Y , ` = 0, r − 1
p(`)(x, x1) > 0, ∀x ∈ Z, ` = 0, r − 1

(31)

and (30) subject to




∑
(x,y)∈Y ∪{(x,x1)}

p(`)(x, y) = 1, ∀x ∈ X, ` = 0, r − 1

d−1
1,1d1 + d−1

1,1d1,2 = 1
d−1

2,1d2 + d−1
2,1d2,2 = 1

d−1
1,1δ1,2(p) = 1

d−1
1,2δ1,1(p) = 1

d−1
2,1δ2,2(p) = 1

d−1
2,2δ2,1(p) = 1

d1, d2, d1,1, d1,2, d2,1, d2,2 > 0
p(`)(x, y) > 0, ∀(x, y) ∈ Y , ` = 0, r − 1
p(`)(x, x1) > 0, ∀x ∈ Z, ` = 0, r − 1

(32)

according to the properties described by Theorems 11 and 12, where δi,j(p), i, j = 1, 2,
are the posynomials from the decomposition

E(T (p∗, p)) = (δ1,1(p)− δ1,2(p))(δ2,1(p)− δ2,2(p))−1 (33)

that follows from the algorithm developed in [2]. The signomial programs (30)− (31)
and (30)− (32) can be handled as geometric programs using the way followed in [8].
If p1 is the optimal solution of the problem (30)− (31) and p2 is the optimal solution
of the problem (30)− (32), then the optimal transition matrix is p ∈ {p1, p2} for
which E(T (p∗, p)) is minimal. If there exists at least one δi∗,j∗(p) ≡ 0, then in (31)
and (32) the corresponding posynomial equality constraints just disappear and the
related substitution di∗,j∗ = 0 is performed in (31) and substitution di∗,3−j∗ = 0 is
performed in (32).
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So, Theorem 13 shows us how to determine the optimal cooperative strategies of
the players using signomial and geometric programming approaches. These methods
were described in details in [8].

6 Conclusions

In this paper stationary games defined on Markov processes with final sequence
of states were studied and the duration and win probabilities of these games were an-
alyzed. It was proved that the game duration is a discrete random variable with ho-
mogeneous linear recurrence distribution. Based on this fact, the generating function
is applied for determining the win probabilities and the main probabilistic character-
istics of the game duration. Also, using the signomial and geometric programming
approaches, the optimal cooperative strategies that minimize the expectation of the
game duration are determined.
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310 p.

[3] Lazari A. Determining the Distribution of the Duration of Stationary Games for Zero-Order
Markov Processes with Final Sequence of States. Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015,
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