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Abstract. A computational method for studying molecular vibrations and spectra for symmetrical systems
with many degrees of freedom was developed. The algorithm allows overcoming difficulties on the automa-
tion of calculus related to the symmetry determination of such oscillations in complex systems with many
degrees of freedom. One can find symmetrized displacements and, consequently, obtain and classify normal
oscillations and their frequencies. The problem is therefore reduced to the determination of eigenvectors
by common numerical methods, and the algorithm simplifies the procedure of symmetry determination
for normal oscillations. The proposed method was applied to studying molecular vibrations and spectra
of the fullerene molecule C60, and the comparison of theoretical results with experimental data is drawn.
The computational method can be further extended to other problems of group theory in physics with
applications in clusters and nanostructured materials.

1 Introduction

The vibration frequency and the frequency degeneracy
are important characteristics in the study of molecular
vibrations and spectra. Each frequency corresponds to
normal oscillation in classical mechanics or certain phonon
eigenfunction in quantum mechanics. When one needs to
investigate not only such phenomenological characteris-
tics, but also it is important to study the vibration process
itself, it becomes useful to consider compliance of the nor-
mal oscillation with certain irreducible representation of
the point group symmetry. This allows us to consider,
for example, the vibration symmetry or the parity of
oscillation with respect to the action of reflection oper-
ator regarding a specific plane. This problem becomes
laborious for molecules with many degrees of freedom,
like fullerene. In the classical approach to the problem
described in [1–3], the numerical algorithm is difficult to
automate for its computer implementation, because the
intermediate calculations do not deal with a particular
vector, but with a subspace or chains of subspaces, i.e.
linear combinations of the vectors and their chains. If
the matrix operators in the space of a certain irreducible
representation are unknown, it is necessary to solve the
problem of finding the basis of irreducible representa-
tion. These problems can be overcome by a computational
method described in this article.
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The method is applied to the molecule of fullerene C60.
In such a way, the performance and reliability of the
developed computational algorithm for finding the nor-
mal coordinates with the use of group theory are proved by
results for the fullerene molecule. Meanwhile, the accuracy
of these results would depend on the used assumption for
the potential function of the interaction between carbon
atoms, and it does not depend on the group classification
method.

2 Theoretical model

Let us consider a molecule of N atoms, and locate the
center of the Cartesian coordinate system in the center
of mass of the molecule. The position of the i atom is
described by the radius vector:

−→r i(t) = −→r 0
i +−→s i(t), i = 1, 2, . . . , N,

where −→r 0
i is the position of the i atom in the unexcited

molecule, −→s i is the displacement vector of the i atom from
the initial position. Then the energy of the system is

H(−→s 1,
−→s 2, . . . ,

−→s N , −̇→s 1,
−̇→s 2, . . . ,

˙−→s N )

= T (−̇→s 1,
−̇→s 2, . . . ,

˙−→s N ) + U(−→s 1,
−→s 2, . . . ,

−→s N ).
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It is well known that the kinetic energy depends on the
square velocity, and the potential energy function is con-
sidered to be a quadratic form of si, as normal molecular
vibrations are harmonious. A local orthonormal basis
{−→e (i)

1 ,−→e (i)
2 ,−→e (i)

3 } is provided for each i atom. System

state is completely described by 3N values s
(i)
α in the con-

figuration space R3N , where s
(i)
α is the i atom movement

projection on α axis of the local basis. The displacement
vector in this space is defined by the following expression,
that is, mechanical representation

−→x = (s
(1)
1 , s

(1)
2 , s

(1)
3 , s

(2)
1 , s

(2)
2 , s

(2)
3 , . . . , s

(N)
1 , s

(N)
2 , s

(N)
3 ).

There are totally 3N −6 normal vibrations in the molecule
(or 3N − 5 for the linear molecules). Vector −→x can be
decomposed on 3N normal coordinates, three of which
correspond to translation and three – to rotation. If the
total momentum of the molecule is zero, then −→x can be
represented in the form

−→x =
3N−6∑
j=1

Qj
−→e jsin(ωjt+ αj),

where Qj is the normal coordinate j, ωj corresponds to
the angular frequency of the vibration j, and {−→e j} forms
a new orthonormal basis for the normal coordinates. If
the frequencies ωi 6= ωj for i 6= j, then the vectors are
orthogonal, i.e. −→e i⊥−→e j . If different vibrations have the
same frequencies, it is impossible to determine the specific
basis vectors, because normal coordinates with the same
frequency are determined with accuracy up to their linear
combination. Therefore, one can always request that the
condition for orthonormality of vectors {−→e j} is respected
in this vibrational representation.

The problem of determining normal vibration frequen-
cies and the symmetry classification of normal vibrations,
i.e. −→e j vectors, using the group theory approach is fur-
ther studied. Let us consider a point group symmetry of
the molecule G, g ∈ G, |G| = m. We denote vibrational
representation of the point group in 3N − 6 dimensions
by Γvib, and Γmec is the mechanical representation of the
group, which includes also translation and rotation of the
molecule as a whole. Γmec and Γvib are reducible and
can be decomposed into irreducible representations Γ′i.
Decomposition of reducible representation into irreducible
ones shall follow the standard procedure described, for
example, in [2]. For nonlinear molecules in a tridimen-
sional space the irreducible representation, a basis of
which is translation of the molecule along the axes, is
the tridimensional antisymmetric representation Tu, and
the irreducible representation with rotational basis is the
tridimensional symmetric representation Tg (or it is bidi-
mensional symmetric one for the linear molecules Bg). Let

us denote by T̂ (g) the operator of g element in the mechan-

ical representation; D
(i)
αβ(g) is the matrix element in the

irreducible representation i, and TrD
(i)
αβ(g) ≡ χi(g) is the

character of g element in the representation i. Projectors
on the invariant subspace of irreducible representation are

defined as follows [2]:

P̂
(i)
αβ =

√
li
m

∑
g∈G

D
(i)

αβ(g)T̂ (g), (1)

where D
(i)

αβ(g) is the complex conjugate element to

D
(i)
αβ(g), and li denotes the representation dimension.

2.1 The classic algorithm

Let us consider the classic algorithm for obtaining the
normal coordinates, as described in [2]:

– decompose mechanical representation on the irre-
ducible representation;

– create symmetric and antisymmetric displacements;
– get the chain vectors by applying the operators

of mechanical representation to the displacement
vectors;

– compose the projector operators of the irreducible
representations by using the matrix elements of the
operators in this representation;

– get the set of basis vectors by applying projector
operators on one of the vectors of each chain;

– find the linear combination of basis vectors obtained
for projectors of a certain irreducible representation,
which will be the normal mode vector.

Representation decomposition on the irreducible rep-
resentations is optional. Knowing how many times the
irreducible representation is included in the mechanical
one allows to exclude from the calculation those oper-
ator actions on the various displacements which do not
bring new information about the invariant subspace. Also,
drawing symmetric and antisymmetric displacements is
not necessary, but it allows us to consider only a rota-
tion group without inversion (mirror image) instead of
the whole symmetry group. Therefore, finding the chains
of vectors is optional, but makes it possible not to per-
form unnecessary additional calculations. Projections are
further obtained according to equation (1), and act on any
vector of each chain. Finding all projectors is not required
since the total number of independent vectors is equal to
the product of dimension of the irreducible representa-
tion and the number of occurrences of this representation
into the mechanical one. Acting with a set of operators
for a particular type of the irreducible representation, one
obtains the invariant basis of the space of the aggregate
of all irreducible representations of this type. Then we
find another basis of this subspace, so that every basis
vector corresponds to a normal vibration of the system
of atoms. This step is either done intuitively for trivial
cases of subspaces with small dimensions or diagonaliz-
ing the Hamiltonian formed by coordinates of one of the
spaces. The method in which some of the above-mentioned
steps are excluded is described in [3]. This method has
been developed to reduce the number of laborious calcu-
lations for researchers. With the development of computer
technology, it has become possible to exclude the step of
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creating symmetric and antisymmetric displacement vec-
tors in order to reduce the number of elements in the
group used in these calculations. To obtain the projector,
characters are used instead of the matrix elements in irre-
ducible representations, which allow the method proposed
below to be used when the matrix form of the irreducible
representations are not known [4–6].

2.2 The new algorithm

The algorithm of the modified calculation method has the
following steps:

– build one projector for each type of the irreducible
representation according to equation (1);

– find eigenvectors with nonzero eigenvalues, which
will be the basis of the projector invariant subspace;

– find a linear combination of basis vectors obtained
for the projector of a certain irreducible representa-
tion, which will be the normal mode vector.

Let us consider N number of atoms, ne is the number of
elements in the group, and np is the number of projectors.
The computational complexity for one projector opera-
tor is O(neN

2), and the first step takes O(npneN
2). The

second step resolves the eigenvector problem for each pro-
jector. The complexity of the problem for determining the
eigenvector has the form O(Nξ), where constant ξ is equal
approximately to 3, depending on the method of diagonal-
ization of matrices. Therefore, the complexity of the entire
second step of the algorithm is O(npN

3). The complexity
of the third step is proportional to the complexity of the
potential function of the interaction between atoms, and
the complexity of the algorithm for determination of the
eigenvectors.

Let us build the projector P̂ (i), at step 1, by summing

projectors P̂
(i)
αα after all α [6]:

P̂ (i) =
∑
α

P̂ (i)
αα =

∑
α

√
li
m

∑
g∈G

D
(i)

αα(g)T̂ (g)

=

√
li
m

∑
g∈G

(∑
α

D
(i)

αα(g)

)
T̂ (g)

=

√
li
m

∑
g∈G

χi(g)T̂ (g).

One can choose such a basis in space L, that some of the
vectors form the basis of the projector’s subspace P̂ (i).
Then any vector in the space can be decomposed in the
next vector sum:

x =
∑
j

xjej
(x) +

∑
k

ykek
(y),

where ek
(y) is the basis vector in the subspace, and

ej
(x) is the complementary orthogonal basis vector. Index

k takes all projections in the invariant subspace, and
indexj takes all projections outside the invariant sub-
space. Let us act on the vector by projector, taking

into account that the element must be in an invariant
subspace:

P̂ (i)x =
∑
j

xjP̂
(i)ej

(x) +
∑
k

ykP̂
(i)ek

(y)

=
∑
k

ykP̂
(i)ek

(y) =
∑
k

y′kek
(y). (2)

We replace x with any projector’s eigenvector with
eigenvalues λ, and compare it to equation (2):

P̂ (i)x = λx =
∑
k

y′kek
(y). (3)

If the eigenvector lies outside the subspace, then it can-
not be represented as a linear combination of the basis
vectors in the subspace, so its eigenvalue is zero. Since the
eigenvectors should form a basis of the space, the number
of eigenvectors lying in the subspace matches the sub-
space dimension. It follows for any x from the subspace
that the eigenvalues of the eigenvectors, lying in the sub-
space, must be equal to 1, because of the properties of the
projector P̂ (i)x = x. Therefore, in order to obtain a basis
for the irreducible representation of this type, it is suf-
ficient to choose the eigenvectors with their eigenvalues
equal to 1. The normal vibrations of the system, which
belong to a given irreducible representation, are obtained
by reducing the potential energy to the sum of the squared
components of the invariant subspace vector. Vibration
frequency degeneration is equal to the dimension of the
irreducible representation. Since the normal vibrations are
orthogonal, they can be used to build an orthonormal
basis of the irreducible representation in order to obtain
matrices of the group elements.

3 Results and discussion

It is well known that the fullerene molecule C60 has
the symmetry of icosahedron (Fig. 1a), and the fullerene
itself represents an icosahedron with truncated vertices
(Fig. 1b). There are 60 different rotation operators, the
action of which transforms the icosahedron into itself. One
can associate a reflection operator to each rotation opera-
tor, which keeps the icosahedron symmetry. It is possible
to obtain a tridimensional representation of the rotation
group, the basis of which coincides with the basis of the
Cartesian coordinate system (x, y, z), implying coordi-
nates of the icosahedron vertices. This process consists
of two stages. The first stage is to find 12 rotations of
the icosahedron, which translate one of the 12 vertices of
the icosahedron to a certain pre-selected node (e.g. to the
point 2 in Fig. 1a), in which the icosahedron goes into itself
without changing orientation in the coordinate system.
These rotations are found in a simple way from geometri-
cal considerations. The second step is to apply the rotation
operator around an axis that runs through the vertex,
which was selected at the first stage (in our example, the
axis goes through vertices 1 and 2 in Fig. 1a), for each
operator used at this stage. Thus, applying five rotation

https://epjb.epj.org/
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(a) (b)

Fig. 1. The icosahedron (a) and truncated icosahedron (b).

(a) (b)

(c) (d)

Fig. 2. Examples of the vibrational modes for the following representations: Ag (a), Au (b), Hg (c), and Gu (d).

operators around the axis at 2π
5 i, where i = 0, 1, 2, 3, 4,

for each of the first 12 vertices, one can obtain all 60 rota-
tion operators. Then, in order to get the complete group,
which would also contain reflection, each of the 60 rotation
operators is multiplied by the reflection (inversion) oper-
ator with respect to one of the reflection planes (e.g. in
Fig. 1a the plane (x, z) can be chosen, which is equivalent
to the operator y → −y).

In order to find the mechanical group representation,
each atom of the fullerene (i.e. the vertex of truncated
icosahedron) needs to be associated with a local basis, in
which the displacement vector can be decomposed. One
can choose any orthonormal basis, for example, which
coincides with the axes x, y, z. For convenience, the follow-
ing basis has been assigned to one of the atoms: the first
vector coincides with the radius vector of the atom; the
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Fig. 3. Deviation of theoretical frequencies from the experimental data: “o” – theoretical results obtained based on the developed
algorithm, “∆” – theoretical result obtained for the elastic interaction model [8].

second vector is chosen perpendicular to the first one, so
that it is coplanar with the edge formed by two hexagonal
faces; the third vector is determined as a cross product
of the first and second vectors, and this automatically
ensures its orthogonality to the first two vectors. Such
an ordered triplet of vectors forms the right basis, that is,
the mixed product of these vectors is greater than zero.
By rotating this atom with the rotation operators, one can
get the local basis for every other atom.

Figure 2 shows examples of fullerene deformation for the
normal oscillations. Figures 2a and 2b correspond to the
symmetric and antisymmetric one-dimensional represen-
tations, respectively, and Figure 2b being the case where
the oscillation frequency is zero. One may notice that this
oscillation is the rotation of the pentagon, in which the
pentagon bonds are not changed and the motion of atoms
in hexagons is perpendicular to the bonds. Figure 2c is an
example of oscillations in the five-dimensional symmetric
representation, and Figure 2d represents an example of
oscillations in the four-dimensional antisymmetric repre-
sentation.

In order to obtain the mechanical representation of
operators, the operator of gi element is represented by

A(i) matrix formed by 60× 60 = 3600 blocks B
(i)
lm, where

each block is a 3× 3 matrix. Thus, the matrix dimension
for the operator of gi element coincides with the number
of degrees of freedom of fullerene, i.e. 180, and it contains
a total of 32 400 elements. If the operator i translates the

m atom into the l atom, then the matrix B
(i)
lm is a uni-

tary matrix, which transforms the basis of m atom into
the basis of l atom. Otherwise, if the operator does not
translate the m atom into the l atom, then the matrix

B
(i)
lm is zero. Obviously, there is only one non-zero block in

each column and each row of the matrix A(i), because each
atom is translated into another atom only. Mechanical rep-
resentation of the fullerene molecule can be decomposed
into irreducible representations as follows [2]:

Γmec = 2Ag + 3T1g + 4T3g + 6Gg + 8Hg +Au
+ 4T1u + 5T3u + 6Gu + 7Hu.

Oscillator representation contains all irreducible repre-
sentations, excluding tridimensional representations cor-
responding to translation (T1u) and rotation (T1g). Know-
ing the mechanical representation, it is not difficult to
obtain the projectors according to equation (3), and to
find their eigenvectors, which are the basis of its invariant
subspace. Forming the potential energy function of coor-
dinates in this subspace basis, it is easy to determine such
linear combinations of these vectors, which would be nor-
mal coordinates. Let us decompose the potential energy
function into the Taylor series approximation around the
undisturbed state up to the second-derivative terms. One
can choose the potential energy so that the zero-degree
term is null, and the sum of first-derivative terms is also
zero, because the potential energy is minimal in the undis-
turbed state. Then the potential energy function takes
the form U =

∑
i,j aijxixj . One can obtain the eigen-

vectors, which are identical with the vectors of normal
vibrations, by diagonalization of the matrix |aij |, that is,
it follows from the meaning of the procedure for the matrix
diagonalization, because the obtained matrix has non-zero
values on the diagonal only, which corresponds to the

term aiix
′
i
2
. By substituting the obtained vectors of nor-

mal vibrations into the potential energy function, one can
write according to the Lagrange equation mẍ′i+a′iix

′
i = 0,

https://epjb.epj.org/
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Table 1. Comparison of the theoretical and experimental frequencies of normal vibrations for the fullerene molecule.

Degeneration
degree

ωtheor,
cm−1

ωtheor,
cm−1

ωtheor,
cm−1

ωexp,
cm−1

ωexp,
cm−1

[8] [9] [9,10] [11]

Ag 1 374 510 494 496 497
1369 1830 1607 1470 1469

T1g 3 450 513 565 568 567
885 1045 813 831 875
1327 1662 1309 1289 1282

T3g 3 542 615 547 553 536
638 724 717 756 –
874 951 757 796 800
1491 1900 1385 1345 1333

Gg 4 369 433 484 485 487
513 593 554 567 569
599 657 745 736 756
1012 1327 1123 1079 –
1443 1813 1332 1310 1307
1600 2006 1578 1482 1501

Hg 5 229 274 259 272 271
357 413 427 433 434
485 526 694 709 711
627 828 760 772 774
999 1292 1103 1099 1101
1187 1575 1328 1252 1248
1479 1910 1535 1425 1422
1675 2068 1628 1575 1573

Au 1 1101 1243 929 984 946
T1u 3 419 478 522 526 –

457 618 570 575 574
1098 1462 1227 1182 1182
1416 1868 1560 1429 1427

T3u 3 307 358 330 343 –
483 526 696 753 –
851 1122 954 973 1044
1123 1543 1239 1205 1200
1574 1954 1598 1525 1536

Gu 4 300 360 353 353 –
604 663 708 764 –
769 876 753 776 –
849 1086 970 961 960
1440 1845 1369 1309 1313
1571 2004 1525 1422 –

Hu 5 339 405 399 403 –
414 470 533 534 –
514 569 654 668 667
731 849 727 743 682
1167 1464 1243 1223 1219
1426 1797 1387 1344 1375
1676 2086 1622 1567 –

where
a′ii
m = ω2

i is the square of the angular frequency of
normal vibrations.

The ωtheor values of the angular frequency of nor-
mal vibrations are obtained for the molecule of fullerene
C60 according to the model described in [7] by using
the proposed in this paper computational method. The
results are shown in Table 1. In the papers [12–16]
the theoretical frequencies are obtained by using the
Density Function Theory (DFT) in the local density

approximation (LDA). Depending on the choice of the
set of basis functions, i.e. the expansion of 24 000 pla-
nar waves [14], the following relative standard deviation
values from the experimental data were reported: 0.019
[14,15], 0.022 [16], 0.039 [13], 0.1 [12]. One can men-
tion that the results for the elastic interaction model [8]
are improved, while DFT can lead to the more accu-
rate results, which would require larger computational
resources.

https://epjb.epj.org/
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Theoretical values calculated based on the developed
algorithm and the experimental data [9,10] are drawn in
Figure 3. The dotted line represents the first quadrant
bisector. One can see that the oscillations with lower fre-
quencies gave greater contribution to the deviation from
the experimental values. At the same time, we can con-
clude that the theoretical model lowers the low frequencies
and increases the higher frequencies. The detailed descrip-
tion of the experimental works, including the magnitude
of the experimental errors, is given in [11]. In order to
describe fullerene oscillations more precisely, one can use
modifications of the Tersoff or Brenner potential functions
[17], Density Function Theory (DFT) or Density Func-
tion Perturbation Theory (DFPT) [11,18,19]. One shall
mention that the vibrational spectrum of the crystalline
structure (Th symmetry group) formed from the hydrated
single fullerene C60 molecules in aqueous solutions was cal-
culated using the molecular dynamics (MD) approach [20],
as well as the equation of state for C60 fullerene aqueous
solutions was proposed [21]. An analogous problem for the
fullerene ionization energy calculations based on an effi-
cient Gaussian-basis implementation of ab initio GW with
explicit treatment of the dynamical screening through
contour deformation techniques was studied [22]. The sug-
gested group classification algorithm can be also applied to
the solutions obtained with different approaches, including
above-mentioned ones. Investigation of the contribution
of different bonds and long-range non-bond interactions
between atoms in the fullerene molecule could be the tasks
for following works on this topic.

4 Conclusions

The modified computational approach proposed in this
article allows us to automate the decomposition process
of the mechanical representation of the system into the
irreducible ones, which is crucial to consider, in general,
complex symmetric system by using the group theory
approach. The application of this algorithm allows us to
consider any symmetric structures with a large number of
interacting particles. In order to obtain the invariant sub-
spaces corresponding to the irreducible representations, it
is not necessary to define the potential function a priori.

This approach allows decomposing mechanical repre-
sentation of the fullerene molecule C60 resolving eigenvec-
tor problem. The first order approximation is not fully
suitable to describe the complete set of vibrations, which
leads to the appearance of zero frequencies and unrelated
movements of the individual subsystems. Undoubtedly,
such oscillations would have lower frequency and energy
when taking into account the higher orders. After the
functional minimization by using the gradient method
[23], the relative standard deviation decreased to 14.7%.
The result obtained in the simulations is based on the
experimental data presented in [9,10]. The relative stan-
dard deviation of theoretical frequencies constitutes 18.4%
compared to the experimental ones. More advanced poten-
tial functions, such as Brenner or Tersoff, describe the
interatomic interaction and molecule oscillations more
accurate, and their parameters can be obtained by fitting

theoretical results to the experimental data. As a further
progress of the work on fullerene molecules [24,25], a com-
putational method for multi-parameter fitting of potential
constants could be developed, in particular, for the simu-
lations of nanoscale systems based on the fullerene.
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