Effect of the Nature of the Anion on the Composition and Structure of Cobalt Complex with Monoethanolamine

A. S. Kotovaya ${ }^{a}$, S. G. Shova ${ }^{a}$, E. I. Melnik ${ }^{b}$, Yu. A. Simonov ${ }^{b, \dagger}$, A. P. Gulya ${ }^{a,}$, , and E. Pahontu ${ }^{c}$
${ }^{a}$ Moldova State University, ul. Matteevicha 60, Chisinau, 277009 Moldova
${ }^{b}$ Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Moldova
${ }^{c}$ Bucharest University, Romania
*e-mail: dociu1946@yahoo.com
Received February 20, 2012

Abstract

A number of products formed in reactions of cobalt(II) salts with monoethanolamine (HEtm) in a neutral medium were synthesized and studied. X-Ray diffraction study showed that the nitrate and acetate form the dimers $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}$ and $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, respectively. In chloride solutions, cobalt is partially oxidized to give the trinuclear complex $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Etm}_{3}\right)_{3}\right\}_{2}\right] \mathrm{Cl}_{3}$. $\mathrm{H}_{2} \mathrm{Etm} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The reaction of the chelate $\left[\mathrm{Co}(\mathrm{Etm})_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with nitric acid is accompanied by complete protonation of the coordinated aminoethanolate ions, and the reaction with formic acid involves complete replacement of the coordinated ligand by acid residue anions and water molecules to give the coordination polymer $\left\{\mathrm{Co}_{2}(\mu-\mathrm{HCOO})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right\}_{n}$.

DOI: 10.1134/S1070328413010053

Previously [1-3], we described the specific features of reactions of monoethanolamine with cobalt(II) chloride and sulfate. Our works and published sources [1-8] prove that the composition and structure of the resulting complex in these systems depends on the conditions of synthesis (metal : ligand ratio, nature of the salt anion, solvent, and pH) because monoethanolamine can be coordinated either in the molecular $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$ (HEtm)) or monodeprotonated (Etm^{-}) form or in the chelating bridging fashion. It was shown [1] that the reaction of a methanol solution of cobalt(II) chloride with β-aminoethanol in the presence of potassium hydroxide ($1: 5: 3$ ratio) affords the chelate $\left[\mathrm{Co}(\mathrm{Etm})_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathbf{I})$ in which all of the coordinated ligands are deprotonated at the hydroxy groups. Previously [3], we showed that depending on the solution pH , the reaction of HEtm with cobalt(II) sulfate yields various types of complexes. The complex $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left(\mathrm{SO}_{4}\right)\left(\mathrm{HSO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (II) in which the ligand is coordinated in the molecular form is isolated from neutral solutions. An identical complex cation is also present in $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (III) resulting from the reaction of complex \mathbf{I} with sulfuric acid. It was shown by X-ray diffraction that the acid residues in complex III are doubly deprotonated, whereas in compound II, half of the acid residues are monodeprotonated. The reaction of HEtm with CoSO_{4} in weakly alkaline medium ($\mathrm{pH} \sim 8$) is accompanied by partial deprotonation of the ligand. Three protons are eliminated from two neutral complexes,

[^0]giving rise to the binuclear complex $\left\{\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 7.75 \mathrm{H}_{2} \mathrm{O}(\mathrm{IV})\right.$.

The purpose of this work is to study the effect of the nature of the cobalt(II) salt anion on the composition and the structure of the products formed in the reaction with HEtm in a neutral medium. Cobalt(II) nitrate, acetate, and chloride salts and KI and $\mathrm{NH}_{4} \mathrm{CNS}$ were used. It was found that the nitrate and acetate form dimeric compounds, $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3} \quad(V)$ and $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathbf{V I})$, in which the coordination environment of cobalt is the same as found in complex IV. Note that in weakly alkaline medium, cobalt chloride forms the trinuclear complex $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{Etm} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (VII) [8].

The reaction of chelate I with nitric acid, as in the case of sulfuric acid [3], is accompanied by complete protonation of the coordinated aminoethanolate ions giving rise to the complex $\left[\mathrm{Co}(\mathrm{Hetm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}(\mathbf{V I I I})$. An X-ray diffraction study of the reaction product of I with formic acid showed that it is an inorganic polymer described as $\left[\mathrm{Co}_{2}(\mu-\mathrm{HCOO})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}(\mathbf{I X})$.

The reactivity of known salt forms of cobalt aminoethanolates was studied by examples of reactions with potassium iodide and ammonium thiocyanate.

EXPERIMENTAL

The complexes were synthesized using reagent grade β-aminoethanol and cobalt(II) nitrate, acetate,
and chloride. Cobalt was quantified by gravimetry, nitrogen was determined by the Dumas method, and the water content was found by thermogravimetry. Compounds I, II, III, and IV were prepared by known procedures [1, 2].

Synthesis of V. β-Aminoethanol ($6 \mathrm{~mL}, 0.1 \mathrm{~mol}$) was added dropwise with stirring to a solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5.82 \mathrm{~g}, 0.02 \mathrm{~mol})$ in an ethanol $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ mixture. The red needle crystals that precipitated after 2 days were filtered off and washed with ethanol and diethyl ether. Yield 81%.

For $\mathrm{C}_{12} \mathrm{H}_{39} \mathrm{~N}_{9} \mathrm{O}_{15} \mathrm{Co}_{2}$

$$
\begin{array}{lll}
\text { anal. calcd. (\%): } & \text { Co, 17.69; } & \text { N, 18.89. } \\
\text { Found (\%): } & \text { Co, 17.47; } & \text { N, 18.79. }
\end{array}
$$

Synthesis of VI. β-Aminoethanol ($6 \mathrm{~mL}, 0.1 \mathrm{~mol}$) was added dropwise with stirring to a solution of $\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(4.98 \mathrm{~g}, 0.02 \mathrm{~mol})$ in an ethanol $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ mixture. The red crystals that precipitated after 36 h were filtered off and washed with ethanol and diethyl ether. Yield 70%.

$$
\begin{array}{llll}
\text { For } \mathrm{C}_{18} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{20} \mathrm{Co}_{2} \\
\text { anal. calcd. }(\%): & \mathrm{Co}, 14.71 ; & \mathrm{N}, 10.47 ; & \mathrm{H}_{2} \mathrm{O}, 17.95 . \\
\text { Found (\%): } & \text { Co, 15.05; } & \mathrm{N}, 10.38 ; & \mathrm{H}_{2} \mathrm{O}, 16.80 .
\end{array}
$$

Synthesis of VII. β-Aminoethanol ($6 \mathrm{~mL}, 0.1 \mathrm{~mol}$) was added dropwise with stirring to a solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.76 \mathrm{~g}, 0.02 \mathrm{~mol})$ in an ethanol (30 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ mixture. The red crystals that precipitated after 36 h were filtered off and washed with ethanol and diethyl ether. Yield 74\%.

$$
\begin{array}{lll}
\text { For } \mathrm{C}_{14} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{Cl}_{3} \mathrm{Co}_{3} \\
\text { anal. calcd. }(\%): C o, 23.87 ; & \mathrm{N}, 13.22 ; & \mathrm{H}_{2} \mathrm{O}, 4.85 . \\
\text { Found (\%): } & \text { Co, 23.51; } & \mathrm{N}, 13.04 ;
\end{array} \mathrm{H}_{2} \mathrm{O}, 4.70 .
$$

Synthesis of VIII. A methanol solution of nitric acid was added dropwise with stirring to complex I $(1 \mathrm{~g}, 0.0034 \mathrm{~mol})$ wetted by a smallest possible amount of methanol in the $\mathbf{I}: \mathrm{HNO}_{3}$ ratio of $1: 3(0.29 \mathrm{~mL}$ of $54 \% \mathrm{HNO}_{3}$ in 25 mL of methanol). Crystallization occurs for $5-7$ days to give a $15-20 \%$ yield.

$$
\begin{array}{lll}
\text { For } \mathrm{C}_{6} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Co} \\
\text { anal. calcd. }(\%): & \mathrm{Co}, 13.78 ; & \mathrm{N}, 19.63 . \\
\text { Found }(\%): & \text { Co, 13.61; } & \mathrm{N}, 19.29 .
\end{array}
$$

Synthesis of IX. A 20% solution of formic acid $(2.2 \mathrm{~mL})$ was added with continuous stirring to a solution containing compound $\mathbf{I}(1 \mathrm{~g}, 0.0034 \mathrm{~mol})$. The red crystalline solid that precipitated after 5 days was filtered off and washed with ethanol and diethyl ether. Yield 41%.

For $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{12} \mathrm{Co}_{2}$
anal. calcd. (\%): Co, 31.89.
Found (\%): Co, 30.96.
Synthesis of $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right] \mathrm{I}_{2} \cdot \mathbf{5 . 7 5 H}_{2} \mathrm{O}(\mathrm{X})$. A saturated solution of KI was added to a solution of any of complexes IV-VI (0.005 mol) in water ($15-$ 20 mL) until a red microcrystalline precipitate started to form. The precipitate was filtered off and washed with ethanol and diethyl ether. Yield 70-76\%.

For $\mathrm{C}_{12} \mathrm{H}_{47.5} \mathrm{~N}_{6} \mathrm{O}_{11.75} \mathrm{I}_{2} \mathrm{Co}_{3}$
anal. calcd. (\%): $\mathrm{Co}, 19.79 ; \quad \mathrm{N}, 9.39 ; \quad \mathrm{H}_{2} \mathrm{O}, 11.57$.
Found (\%): Co, 19.41; N, 9.24; $\quad \mathrm{H}_{2} \mathrm{O}, 11.30$.
Synthesis of $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right](\mathrm{NCS})_{3}(\mathrm{XI})$. A saturated solution of $\mathrm{NH}_{4} \mathrm{SCN}$ was added to a solution of any of complexes IV-VI (0.005 mol) in water ($15-20 \mathrm{~mL}$) until a blue microcrystalline precipitate started to form. The precipitate was filtered off and washed with ethanol and diethyl ether. Yield 70-80\%.

For $\mathrm{C}_{15} \mathrm{H}_{39} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}_{3} \mathrm{Co}_{2}$
anal. calcd. (\%): Co, 18.01; $\mathrm{N}, 19.23$.
Found (\%): \quad Co, 17.84; $\quad \mathrm{N}, 19.15$.
Synthesis of $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}_{2}$ $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{NCS})_{6}\right](\mathrm{NCS})_{2}$ (XII). A saturated solution of $\mathrm{NH}_{4} \mathrm{SCN}$ was added to a solution of complex VII or \mathbf{X} (0.005 mol) in water $(15-20 \mathrm{~mL})$ until a red microcrystalline precipitate started to form. The precipitate was filtered off and washed with ethanol and diethyl ether. Yield 60-65\%.

For $\mathrm{C}_{32} \mathrm{H}_{78} \mathrm{~N}_{20} \mathrm{O}_{12} \mathrm{~S}_{8} \mathrm{Co}_{5}$
$\begin{array}{lll}\text { anal. calcd. (\%): } & \text { Co, 19.86; } & \mathrm{N}, 18.85 . \\ \text { Found (\%): } & \text { Co, 18.61; } & \mathrm{N}, 18.62 .\end{array}$
X-ray diffraction. The experimental data for $\mathbf{V}-\mathbf{X}$ and XII were collected at 100 K on a Bruker SMARTAPEX II CCD diffractometer ($\mathrm{Mo} K_{\alpha}$ radiation, $\lambda=$ $0.71073 \AA$, graphite monochromator). The absorption corrections were applied empirically by the SADABS program. The structures were solved by the direct method and refined by the least-squares method in the full-matrix anisotropic mode for non-hydrogen atoms (SHELX-97). The hydrogen atom positions at the N and O atoms were found from difference Fourier maps and detailed considering the geometric parameters of htdrogen bonds (Table 1, 2). The position of other H atoms were calculated geometrically and refined isotropically in the "rigid body" model c $U_{\mathrm{H}}=1.2 U_{\mathrm{eq}}$ of C atoms.

Fig. 1. Structure of the compound $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}(\mathbf{V})$; some interatomic distances: $\mathrm{Co1}-\mathrm{O} 1,1.905(4)$; $\mathrm{Co} 1-$ $\mathrm{O} 2,1.920(4) ; \mathrm{Col-O} 3,1.911(4) ; \mathrm{Co1-N1,1.936(5);} \mathrm{Co1-N2,1.948(5);} \mathrm{Co1-N3,1.926(4)} \mathrm{\AA ̊} \mathrm{and} \mathrm{bond} \mathrm{angles:} \mathrm{O1Co1O3}$, $92.0(2)^{\circ}, \mathrm{O} 2 \mathrm{ColN} 1,174.9(2)^{\circ} ; \mathrm{O} 1 \mathrm{Co1O2}, 90.0(2)^{\circ} ; \mathrm{N} 3 \mathrm{ColN} 1,93.0(2)^{\circ} ; \mathrm{O} 3 \mathrm{Co1O2}, 90.7(2)^{\circ} ;$ O1ColN2, 89.3(2)${ }^{\circ}$; O1Co1N3, 176.6(2) ${ }^{\circ}$; 3 ColN2, 175.5(2) ${ }^{\circ}$; O3ColN3, 85.3(2) ${ }^{\circ}$; O2Co1N2, 85.0(2) ${ }^{\circ}$; O2Co1N3, 92.1(2) ${ }^{\circ}$; N3Co1N2, $93.6(2)^{\circ}$; O1Co1N1, 85.0(2) ${ }^{\circ}$; N1Co1N2, 94.2(2) ${ }^{\circ}$; O3Co1N1, 90.2(2) ${ }^{\circ}$.

Fig. 2. Structure of the cation $\left\{\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]\right\}^{3+}$ and the hydrogen-bonded anions $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathbf{V I})$; some interatomic distances: Col-O1, 1.886(5); Co1-O2, 1.919(5); Co1-O3, 1.959(5); Co1-N1, 1.920(6); Co1-N2, 1.885(6); Co1-N3, $1.972(6) \AA$ and bond angles: O1Co1N1, 87.2(2) ${ }^{\circ}$; O1Co1N2, $92.6(2)^{\circ}$; O1ColN3, 175.5(2) ${ }^{\circ}$; O1Co1O2, 93.3(2) ${ }^{\circ}$; O1Co1O3, $91.6(2)^{\circ}$; N1Co1O3, $90.6(2)^{\circ}$; N1Co1N3, $90.1(3)^{\circ}$; N1Co1O2, 179.5(2) ${ }^{\circ}$; O2Co1O3, 89.6(2) ${ }^{\circ}$; O2Co1N3, 89.4(2) ${ }^{\circ}$; O3ColN3, 84.7(2) ${ }^{\circ}$; N2Co1O2, 86.9(2) ${ }^{\circ}$; N2Co1O3, 174.7(2) ${ }^{\circ}$; N2Co1N1, 92.9(3) ${ }^{\circ}$; N2ColN3, 91.2(3).

The crystal data and X-ray experiment details for $\mathbf{V}-\mathbf{X}$ and XII are summarized in Table 1 and the geometric parameters of hydrogen bonds (HBs) are in Table 2. The structures of complexes $\mathbf{V}-\mathbf{X}$ and XII are shown in Figs. 1-7. The positional and thermal
parameters of structures $\mathbf{V}-\mathbf{X}$ and XII are deposited with the Cambridge Crystallographic Data Bank (nos. 861997-862003, respectively; deposit@ ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/ data_request/cif).

Fig. 3. Structure of $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{Etm} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathbf{V I I})$; some interatomic distances: Col-O1, 2.108(2); Col-O4, 2.075(2); Co1-O2, 2.054(2); Co1-O5, 2.116(2); Co1-O3, 2.113(2); Co1-O6, 2.158(2); Co2-N1, 1.941(3); Co2-N6, $1.937(2) ; \mathrm{Co} 2-\mathrm{O} 1,1.921(2) ; \mathrm{Co} 2-\mathrm{N} 2,1.950(3) ; \mathrm{Co} 2-\mathrm{O} 2,1.914(2) ; \mathrm{Co} 2-\mathrm{N} 3,1.938(3) ; \mathrm{Co} 2-\mathrm{O} 3,1.911(2)$; Co2-N4, $1.939(2) ; \mathrm{Co} 2-\mathrm{N} 1,1.941(3)$; Co2-N5, 1.946(2); Co3-O4, 1.908(2); Co3-N4, 1.935(3); Co3-O5, 1.930(2); Co3-N5, $1.935(3) ; \mathrm{Co} 3-\mathrm{O}, 1.923(2) ; \mathrm{Co3}-\mathrm{N} 6,1.934(3) \AA \AA$; and bond angles: $\mathrm{O} 4 \mathrm{Co1O} 1,111.37(9)^{\circ}$; O2Co1O1, $77.66(9)^{\circ}$; O5Co1O6, $76.12(9)^{\circ}$; O2Co1O3, 77.38(9) ${ }^{\circ}$; O4Co1O3, 171.88(9) ${ }^{\circ}$; O1Co1O3, 76.26(9) ${ }^{\circ}$; O2Co1O4, 101.11(9) ${ }^{\circ}$; O2Co1O5, 172.68(9) ${ }^{\circ}$; O4ColO5, 78.01(9) ${ }^{\circ}$; O1ColO5, 95.82(9) ${ }^{\circ}$; O4ColO6, 75.44(9) ${ }^{\circ}$; O1Co1O6, 168.5(1) ${ }^{\circ}$; O3Co1O6, 97.53(9) ${ }^{\circ}$; O3Co2O2, $85.9(1)^{\circ}$; $\mathrm{O} 3 \mathrm{Co} 2 \mathrm{O} 1,85.7(1)^{\circ}$; O2Co2O1, 85.8(1) ${ }^{\circ}$; O3Co2N3, 93.0(1) ${ }^{\circ}$; $\mathrm{O}_{2} \mathrm{Co} 2 \mathrm{~N} 3,87.0(1)^{\circ}$; $\mathrm{O} 1 \mathrm{Co} 2 \mathrm{~N} 3,172.7(1)^{\circ}$; O3Co2N1, 173.1(1) ${ }^{\circ}$; N3Co2N1, 93.7(1) ${ }^{\circ}$; O3Co2N2, 87.7(1) ${ }^{\circ}$; O2Co2N2, 173.5(1) ${ }^{\circ}$; O1Co2N2, 92.7(1) ${ }^{\circ}$; N3Co2N2, 94.4(1) ${ }^{\circ}$; N1Co2N2, 93.1(1) ${ }^{\circ}$; O4Co3O6, 85.1(1) ${ }^{\circ}$; O4Co3O5, 86.8(1) ${ }^{\circ}$; O6Co3O5, 86.3(1) ${ }^{\circ}$; O4Co3N6, 174.1(1) ${ }^{\circ}$; O6Co3N6, 93.8(1) ${ }^{\circ}$; O5Co3N6, 87.3(1) ${ }^{\circ}$; O4Co3N5, 93.3(1) ${ }^{\circ}$; O6Co3N5, 87.6(1) ${ }^{\circ}$; O5Co3N5, 173.9(1) ${ }^{\circ}$; N6Co3N5, $92.4(1)^{\circ} ; \mathrm{O} 4 \mathrm{Co3N} 4,87.1(1)^{\circ} ; \mathrm{O} 6 \mathrm{Co3N} 4,172.1(1)^{\circ}$; O5Co3N4, $92.1(1)^{\circ} ; \mathrm{N} 6 \mathrm{Co3N} 4,93.8(1)^{\circ}$; N5Co3N4, 94.1(1) ${ }^{\circ}$.

Fig. 4. Structure of $\left[\mathrm{Co}(\mathrm{HEtm})_{3}\right]\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{VIII}) ;$ some interatomic distances: $\mathrm{Co1-O1}, 1.948(1) ; \mathrm{Co1-O} 2,1.922(1) ; \mathrm{Co1-O}$, 1.921(8); Col-N1, 1.931(1); Col-N2, 1.926(1); Co1-N3, 1.927(1) \AA; and bond angles: O3Co1O2, 86.09(4) ${ }^{\circ}$; O2Co1N2, $84.99(4)^{\circ}$; N2Co1N3, $93.95(4)^{\circ}$; N1Co1O1, 85.03(4) ${ }^{\circ}$; O2Co1N3, $170.80(4)^{\circ}$; O3Co1N1, 177.24(4) ${ }^{\circ}$; O2Co1N1, 95.65(4) ${ }^{\circ}$; N2ColN1, $92.15(4)^{\circ}$; N3ColN1, $93.51(4)^{\circ} ;$ O3ColN2, $90.14(4)^{\circ}$; O3ColO1, $92.79(4)^{\circ}$; O2ColO1, $91.57(4)^{\circ}$; N2Co1O1, $175.33(4)^{\circ} ; \mathrm{N} 3 \mathrm{Co1O1}, 89.94(4)^{\circ} ; \mathrm{O}^{\circ} \mathrm{Co} 1 \mathrm{~N} 3,84.78(4)^{\circ}$.

Fig. 5. Fragment of the crystal structure of $\left[\mathrm{Co}_{2}(\mu-\mathrm{HCOO})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}(\mathbf{I X})$; some interatomic distances: $\mathrm{Co} 1-\mathrm{O} 1^{1}$, 2.094(2); $\mathrm{Co} 1-\mathrm{O} 2,2.065(2)$; $\mathrm{Co} 1-\mathrm{O} 3,2.13(2)$; $\mathrm{Co} 2-\mathrm{O} 6,2.145(2)$; $\mathrm{Co} 2-\mathrm{O} 1 w, 2.127(2) ; \mathrm{Co} 2-\mathrm{O} 2 w, 2.042(2) ; \mathrm{O} 2 \mathrm{Co} 1 \mathrm{O} 1^{1}, ~ 90.43(6) \AA$; and bond angles: $\mathrm{O} 2 \mathrm{Co} 1 \mathrm{O} 3,87.42(7)^{\circ} ; \mathrm{O} 1^{1} \mathrm{Co} 1 \mathrm{O} 3,86.42(7)^{\circ} ; \mathrm{O} 2 w \mathrm{Co} 2 \mathrm{O} 1 w, 90.71(7)^{\circ} ; \mathrm{O} 2 w \mathrm{Co} 2 \mathrm{O} 6,89.85(6)^{\circ} ; \mathrm{O} 1 w \mathrm{Co} 2 \mathrm{O} 6$, $88.81(6)^{\circ}\left({ }^{1}-x+2, y-1 / 2,-z-1 / 2\right)$.

RESULTS AND DISCUSSION

Compounds \mathbf{V} and VI refer to the same type. The crystal structure is based on the dimeric cation in which two chemically equivalent units are connected by strong hydrogen bonds. The units $\mathrm{Co}(\mathrm{Etm})_{3}$ are arranged in the head-to-head fashion, the $\mathrm{CoN}_{3} \mathrm{O}_{3}$ coordination octahedron having a fac-configuration. The $\mathrm{O} \cdots \mathrm{O}$ distances in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond are within 2.395-2.457 \AA, which does not rule out the possibility of equally probable proton distribution on the donor and the acceptor.

Upon the reaction of β-aminoethanol with cobalt(II) chloride in a neutral medium, we isolated trinuclear complex VII reported in [3] (obtained in weakly alkaline medium). These results indicate that the complexation is rather dictated by the nature of the anion of the initial salt and is less dependent on the pH of the reaction medium, as even in a neutral medium, the ligand is coordinated in the deprotonated form. The sulfate, nitrate, and acetate ions containing nonmetal in the higher oxidation state and, hence, having oxidative properties, promote complete oxidation of Co^{2+} to Co^{3+} in the presence of air oxygen. In the case of chloride ions, this reaction occurs only partially,
and the isolated complex contains Co^{2+} and Co^{3+} in 1:2 ratio.

The replacement of sulfuric acid by nitric acid in the protonation of chelate I did not show considerable changes. The isolated complex VIII is mononuclear and is identical to complex III.

For comparative analysis, we studied the protonation reactions with organic acids (formic, acetic, oxalic, succinic, and adipic acids). It was noted that after addition of the corresponding acid, the violetcolored solution of cobalt(III) tris- β-aminoethanolate turns red. Several days later, in the case of formic and acetic acids, a red microcrystalline solid precipitates from solutions, and solutions with a dicarboxylic acid (oxalic, succinic, and adipic) change the color once again to violet, and a mixture of the initial complex and the corresponding acid precipitates from the solution.

According to elemental analysis data, the compound obtained by the reaction of cobalt(III) tris- β aminoethanolate with formic acid contains no nitrogen. The IR spectrum exhibits no absorption bands for amino groups, but two absorption bands at 1570 and $1408 \mathrm{~cm}^{-1}$ corresponding to the asymmetric and symmetric vibrations of carboxyl group are clearly seen.

Fig. 6. Structure of $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right] \mathrm{I}_{2} \cdot 5.75 \mathrm{H}_{2} \mathrm{O}(\mathbf{X})$; some interatomic distances: $\mathrm{Co1-O4}, 1.926(3)$; Co1-O5, 1.913(3); Co1-O6, 1.916(3); Co1-N4, 1.950(4); Co1-N5, 1.933(4); Co1-N6, 1.946(4); Co2-O1, 2.133(3); Co2-O2, 2.048(3); Co2O3, 2.131(3); Co2-O4, 2.096(3); Co2-O5, 2.091(3); Co2-O6, 2.140(3); Co3-O1, 1.925(3); Co3-O2, 1.894(3); Co3-O3, 1.917(3); Co3-N1, 1.946(4); Co3-N2, 1.941(4); Co3-N3, 1.938(4) Å; and bond angles: O4Co1N4, 87.5(1) ${ }^{\circ}$; O4Co1N5, 173.5(2) ${ }^{\circ}$; O4Co1N6, 91.2(2) ${ }^{\circ}$; O5Co1N6, 173.0(1) ${ }^{\circ}$; O5Co1O6, 85.7(1) ${ }^{\circ}$; O5Co1O4, 86.6(1) ${ }^{\circ}$; O5Co1N5, 87.5(1) ${ }^{\circ}$; O6ColN5, 91.6(1) ${ }^{\circ}$; O6Co1O4, 85.5(1) ${ }^{\circ}$; O6ColN6, 87.5(1) ${ }^{\circ}$; N5Co1N6, 94.4(2) ${ }^{\circ}$; O5Co1N4, 91.2(1) ${ }^{\circ}$; O6Co1N4, $172.4(2)^{\circ}$; N5Co1N4, 95.2(2) ${ }^{\circ}$; N6ColN4, 95.3(2) ${ }^{\circ}$; O3Co2O5, 177.4(1) ${ }^{\circ}$; O3Co2O4, 102.4(1) ${ }^{\circ}$; O5Co2O4, 77.9(1) ${ }^{\circ}$; $\mathrm{O} 3 \mathrm{Co} 2 \mathrm{O} 2,77.1(1)^{\circ}$; $\mathrm{O} 5 \mathrm{Co} 2 \mathrm{O} 2,102.6(1)^{\circ}$; $\mathrm{O} 4 \mathrm{Co} 2 \mathrm{O} 2,178.6(1)^{\circ}$; $\mathrm{O} 3 \mathrm{Co} 2 \mathrm{O} 1,76.7(1)^{\circ}$; $\mathrm{O} 5 \mathrm{Co} 2 \mathrm{O} 1,100.7(1)^{\circ}$; O 4 Co 2 O 1 , 102.7(1) ${ }^{\circ}$; O3Co2O1, 75.9(1) ${ }^{\circ}$; O2Co2O6, 106.7(1) ${ }^{\circ}$; O5Co2O6, 76.0(1) ${ }^{\circ}$; O2Co2O6, 105.5(1) ${ }^{\circ}$; O4Co2O6, 76.0(1) ${ }^{\circ}$; O1Co2O6, 176.6(1) ${ }^{\circ}$; O1Co3N1, 87.49(14) ${ }^{\circ}$; O1Co3N2, 92.29(2) ${ }^{\circ}$; O1Co3N3, 172.48(2) ${ }^{\circ}$; O3Co3N1, 91.2(2) ${ }^{\circ}$; O3Co3N2, $173.8(2)^{\circ}$; O3Co3N3, 87.1(2) ${ }^{\circ}$; O3Co3O1, 85.6(1) ${ }^{\circ}$; O3Co3O2, 86.3(1) ${ }^{\circ}$; O2Co3O1, 86.1(1) ${ }^{\circ}$; O2Co3N1, 173.3(1) ${ }^{\circ}$; O2Co3N2 87.8(1) ${ }^{\circ}$; O2Co3N3, 91.7(1) ${ }^{\circ}$; N2Co3N1, 94.6(2) ${ }^{\circ}$; N3Co3N1, 94.4(2) ${ }^{\circ}$; N3Co3N2, 94.8(2) ${ }^{\circ}$.

Fig. 7. Structure of (a) the cation $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}_{2}$ and (b) the anion $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{NCS})_{6}\right](\mathrm{NCS})_{2}$ in $\mathbf{~ X I I ; ~ s o m e ~ i n t e r - ~}$ atomic distances: $\mathrm{Co} 1-\mathrm{O} 1,1.901$ (2); $\mathrm{Co} 1-\mathrm{O} 2,1.924(2)$; $\mathrm{Co} 1-\mathrm{O} 3,1.889(2) ; \mathrm{Co} 1-\mathrm{N} 1,1.947(2)$; $\mathrm{Co} 1-\mathrm{N} 2,1.934(2) ; \mathrm{Co} 1-\mathrm{N} 3$, 1.929(2); Co2-O4, 1.898(2); Co2-O5, 1.901(2); Co2-O6, 1.909(2); Co2-N6, 1.937(2); Co2-N4, 1.939(2); Co2-N5, $1.946(2) ; \mathrm{Co} 3-\mathrm{N} 7,2.115(2) ; \mathrm{Co3-N} 8,2.118(3) ; \mathrm{Co3-N} 9,2.118(2) \AA$; and bond angles: O1Co1O2, 91.54(8) ${ }^{\circ}$; O1Co1N1, $85.24(9)^{\circ}$; O1Co1N2, 176.8(1) ${ }^{\circ}$; O1Co1N3, 89.03(9) ${ }^{\circ}$; O2Co1N1, 87.86(9) ${ }^{\circ}$; O2ColN2, 85.39(9) ${ }^{\circ}$; O2Co1N3, 178.55(9) ${ }^{\circ}$; $\mathrm{O} 3 \mathrm{Co1O1}, 91.07(8)^{\circ}$; O3Co1O2, $91.75(8)^{\circ}$; O3ColN1, 176.28(9) ${ }^{\circ}$; O3ColN2, 88.23(9) ${ }^{\circ}$; O3ColN3, 86.90(9) ${ }^{\circ}$; N2ColN1, $95.4(1)^{\circ}$; N3Co1N1, $93.5(1)^{\circ}$; N3Co1N2, 94.0(1) ${ }^{\circ}$; O4Co2O5, 92.13(8) ${ }^{\circ}$; O4Co2O6, 90.34(8) ${ }^{\circ}$; O4Co2N4, 85.68(9) ${ }^{\circ}$; O4Co2N5, 89.37(9) ${ }^{\circ}$; O4Co2N6, 175.60(9) ${ }^{\circ}$; O5Co2O6, $91.95(8)^{\circ}$; O5Co2N4, 177.81(9) ${ }^{\circ}$; O5Co2N5, 85.56(9) ${ }^{\circ}$; O5Co2N6, 87.37(9) ${ }^{\circ}$; O6Co2N4, 87.93(9) ${ }^{\circ}$; O6Co2N5, 177.5(1) ${ }^{\circ}$; O6Co2N6, 85.31(9) ${ }^{\circ}$; N4Co2N5, 94.6(1) ${ }^{\circ}$; N6Co2N4, 94.8(1) ${ }^{\circ}$; N6Co2N5, 94.9(1) ${ }^{\circ}$; N7Co3N8, 89.60(9) ${ }^{\circ}$; N7Co3N9, 93.11(9) ${ }^{\circ}$; N8Co3N9, 88.61(9) ${ }^{\circ}$.
Table 1．Crystallographic data and X－ray experiment and structure refinement details for compounds $\mathbf{V}-\mathbf{X I I}$

08t＊0－／0z9＊0	S6t＊0－／Ltで，I	$\varepsilon \varepsilon \varepsilon \cdot 0-/ \pm \varepsilon z^{*} 0$	S0t＊ $0-/ L 0 t^{*} 0$	18t＊0－／tLE．0	LZS．0－／0L0＇I	I9I＇I－／0St．0	
$\begin{aligned} & I \angle 90^{\circ} 0={ }^{\tau} y \mathcal{M} \\ & \checkmark 68 \angle 0^{\circ} 0={ }^{\mathrm{I}} y \end{aligned}$	$\begin{aligned} & I \angle S 0^{\circ} 0={ }^{\tau} Y M \\ & \cdot{ }^{\prime} 99 Z 0^{\circ} 0={ }^{\mathrm{I}} \mathrm{H} \end{aligned}$	$\begin{aligned} & 66+0 \cdot 0={ }^{\tau} y M \\ & { }^{2} Z \varepsilon 0^{\circ} 0={ }^{\mathrm{I}} y \end{aligned}$	$\begin{gathered} 6090^{\circ} 0={ }^{\tau} y \mathrm{ym} \\ 6880^{\circ} 0={ }^{\mathrm{I}} \mathrm{y} \end{gathered}$				（ełep IIP）${ }^{\text {d }}$
				$\begin{gathered} \angle 9 \subseteq 0^{\circ} 0={ }^{\tau} y M \\ { }^{\prime} \mathrm{ySZ} 0^{\circ} 0={ }^{\mathrm{I}} \mathrm{y} \end{gathered}$	$\begin{aligned} & 00 \varepsilon \Gamma^{\circ} 0={ }^{\tau} y{ }^{\prime} \\ & 06+0^{\circ} 0={ }^{\mathrm{I}} y \end{aligned}$	$\begin{aligned} & \text { StoI } 0={ }^{\tau} \mathrm{Y}^{\mathrm{M}} \\ & { }^{\circ} \mathrm{LIS} 0^{\circ} 0={ }^{\mathrm{I}} \mathrm{C} \end{aligned}$	$((I) \bigcirc 乙<I)$ y
020 ${ }^{\text {I }}$	IS0＇I		It0 ${ }^{\text {I }}$	ES0 ${ }^{\circ}$ I	L90 ${ }^{\text {I }}$	820 ${ }^{\circ}$ I	${ }_{\tau}^{194} H^{\text {uo }}$ HOOD
$6 \downarrow \mathcal{E}$		¢8	927	97ε	ZLZ	†LI	s．əəəше． －rd pəuџə．јd ．ıə
	（910＊0） $000^{\circ} 0^{-}$					（てち0＊0）¢ ¢ ¢ 0	
$\begin{gathered} (Z I 60.0) \\ 6 L 89 / \angle 688 t \end{gathered}$	$\begin{gathered} (\varsigma \varsigma \downarrow 000) \\ \varsigma 99 \varsigma / 860 \varsigma Z \end{gathered}$	$\begin{aligned} & (\varsigma \angle \neg 0.0) \\ & \angle 88 / 6606 \end{aligned}$	$\begin{gathered} \left(\varepsilon 0 \downarrow 0^{\circ} 0\right) \\ 0 \mathrm{I} \angle \mathrm{~L} / \mathrm{\varsigma} \mathrm{I} \downarrow \mathrm{~S} \end{gathered}$	$\begin{gathered} \left(\varepsilon \varepsilon \varepsilon 0^{\circ} 0\right) \\ 6 \subseteq 0 \varsigma /[606 \end{gathered}$	$\begin{gathered} (8 \mathrm{I} \angle 0.0) \\ \mathcal{E} \subseteq \mathcal{E} / 89 \angle \varsigma Z \end{gathered}$	$\begin{gathered} (9 \varepsilon \varsigma 0.0) \\ 80 \varsigma \tau / 8 t 9 \mathrm{IL} \end{gathered}$	－и！！／pə．ınseәш јо Іәquии әЧL
$6 \mathrm{I}>1>6 \mathrm{I}-$	$8 \mathrm{I}>1>8 \mathrm{I}-$	II $>1>\mathrm{II}$	てI＞ 1 ＞ I －	9I＞ $1>$ LI－	$\varepsilon I>1>\varepsilon ⿺-$	$9 \varepsilon>1>L \varepsilon-$	
＇ $\mathrm{CI} \times 4>\mathrm{SI}-$	＇0I＞y＞0I－	＇ $8>4>8-$	＇6I＞y＞6I－	＇tI＞リアカ⿺－	＇$\varepsilon I>y>\varepsilon ⿺ 𠃊$	＇0I＞y＞0I－	
＇II $>4>\mathrm{II}-$	＇$\angle Z>4>\angle Z-$	＇0I $>4>0 \mathrm{I}-$	＇ $8 \mathrm{I}>4>8 \mathrm{I}-$	$' \downarrow \tau>4>\downarrow \tau-$	＇0I $>4>0 \mathrm{I}-$	＇0I $>4>0 \mathrm{I}-$	səo！pu！jo əธิบ区у
$05^{\circ} \angle Z-68^{\circ} \mathrm{I}$	00＊9て－zs．${ }^{\text {c }}$	$60^{\circ} \mathrm{CZ}-\angle \varepsilon^{\circ}$ 乙	L0＇0E－9L＇乙	$00 \cdot 97-\varsigma \varepsilon^{\circ} \varepsilon$	00．92－96．I	$69^{\circ} ¢$ ¢－10．${ }^{\text {c }}$	ธิวр＇θ јо วธินеу
$\varsigma I^{\circ} 0 \times Z^{*} 0 \times \mathcal{E}^{\prime} 0$	$\bigcirc 0^{\circ} 0 \times \varsigma I^{\circ} 0 \times て ゙ 0$	$80^{\circ} 0 \times て ゙ 0 \times 8 て^{\circ} 0$	$\tau^{*} 0 \times \varsigma \tau^{*} 0 \times \varepsilon^{\circ} 0$	I $0 \times 8 \times 8{ }^{\circ} 0 \times て ゙ 0$		$\mathrm{I}^{\circ} 0 \times て ゙ 0 \times て ゙ 0$	
$00 L^{\circ} \mathrm{I}$	$806{ }^{\circ} \mathrm{E}$	Z86 ${ }^{\text {\％}}$	てカI．I	$8 \pm 00^{\circ} \mathrm{Z}$	$000{ }^{\text {I }}$	$8 \dagger^{\prime} \mathcal{E}^{\prime} \mathrm{I}$	
st90．${ }^{\text {¢ }}$ I	290\％${ }^{\text {¢ }}$ ¢	¢91．z＇t	¢9L．I ${ }^{\text {¢ }}$（	8IL＇I ${ }^{\text {¢ }}$（		689＊I ${ }^{\text {¢ ¢ }}$	
（ I ）${ }^{\circ} 000 \mathrm{SI}$	（I）L^{\prime} I 887	（ع）$\angle S^{\circ} \angle 9 S$	（て）$\underbrace{\prime}$ II9I	（ I ） 28988	（ I$) て$＇ $\mathcal{0} 06$	（ I$) \mathrm{z}^{\circ} 896 \mathrm{I}$	£ ${ }^{\text {＇}}$＇
（て）080．96	06	06	06	06	（ち） 1 LE＊99	0ZI	ภәр＇ℓ
（て）$£ \varepsilon 9 \cdot \varepsilon 6$	（ع）689 ${ }^{\circ} 16$	（と）$\dagger 0 t^{\circ} \mathrm{L}$（	（ع） $\mathcal{L} L 0.66$	（て） $2 ¢ \%$－8II	（ \mathcal{L} ）$¢ \not 0^{\circ}\llcorner 9$	06	ธวр＇ู
（て） $20 ¢^{\circ} 0 \mathrm{II}$	06	06	06	06	（¢） $180 \cdot 08$	06	ภวр＇ 0
（9）8E68 $\dagger \mathrm{I}$	（ع） 9666.7 I	（ع） \mathcal{L} ILZ 6	（¢） $0 ¢ 88.8$	（ \downarrow ）097が \downarrow I	（L）¢6¢で II	（ I$) 69 \varepsilon^{\circ} 0 \varepsilon$	V＇o
（¢） $8 \pm 00 \cdot \mathrm{I}$	（て） $90 \angle 9 \cdot 8$		（L） $8099^{\circ} \mathrm{E}$ I	（t）0¢cs ${ }^{\text {I }}$ I	（8）0ZI8．01	（て）80¢9＊8	$\mathrm{V}^{\prime} q$
（ع）$\angle\llcorner 90 \cdot 6$	（9）\downarrow L9I＇で	（ع）\downarrow ¢99 8	（L）$\angle \varepsilon+t^{\circ} \mathrm{E}$ I		（¢） 2008°	（て）80¢9 8	$\mathrm{V}^{\prime} p$
$\underline{\mathrm{I}}$ d	30	${ }^{2} /{ }^{\text {L }}$ d	${ }^{\text {／}}$ ²d	93	$\underline{\mathrm{I}}$ d	${ }^{2} \tau^{2} \varepsilon{ }^{\text {d }}$	dnous วords
э！̣！${ }^{\text {¢ }}$	ง！̣！${ }^{\text {oouow }}$	э！̣！${ }_{\text {oouow }}$	ง！̣！${ }^{\text {oouow }}$	э！̣！${ }_{\text {¢ }}$		［ruos！ul	
Lで98tI	¢9．t68	$00{ }^{\circ} \mathrm{S}$ I	で・8ても	$\varepsilon L^{\prime} I t L$	19＇208	$8 \varepsilon^{*} \angle 99$	W
IIX	X	XI	IIIM	IIM	IM	$\boldsymbol{\Lambda}$	punoduo

Table 2. Geometric parameters of the hydrogen bonds in $\mathbf{V}-\mathbf{X}$ and XII

D $-\mathrm{H} \cdots \mathrm{A}$ contact	Distance, \AA			DHA angle, deg
	D-H	H $\cdots \mathrm{A}$	D $\cdots \mathrm{A}$	
V				
$\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(2)^{1}$	0.98	1.45	2.421(5)	170
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(1)^{1}$	0.99	1.43	2.395(8)	163
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(6)$	0.90	2.18	3.037(7)	159
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(6)^{2}$	0.90	2.20	3.079(7)	166
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(5)$	0.90	2.28	3.016 (7)	138
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(7)^{3}$	0.90	2.26	3.089(8)	153
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(7)^{2}$	0.90	2.26	3.072(7)	150
* Symmetry codes: ${ }^{1} x-y,-y,-z+1 / 3 ;{ }^{2} y+1, x,-z ;{ }^{3} x+1, y+1, z$ for \mathbf{V}.				
VI				
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(5)$	0.90	1.89	2.762(4)	163
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(6)^{1}$	0.90	1.85	2.750(4)	172
$\mathrm{O}(3 w)-\mathrm{H} \cdots \mathrm{O}(6)$	0.90	1.88	2.754(4)	162
$\mathrm{O}(3 w)-\mathrm{H} \cdots \mathrm{O}(2 w)$	0.90	2.05	2.761(5)	135
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(5)^{2}$	0.90	2.22	3.091(7)	162
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(5)$	0.90	2.01	2.879(7)	162
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(4)^{3}$	0.90	2.11	2.960(7)	156
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(4)$	0.90	1.88	2.779(7)	172
$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(1)^{4}$	0.90	1.94	2.820(7)	165
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(3)^{4}$	0.89	2.21	2.919(7)	137
$\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(2)^{4}$	0.89	2.21	2.998(7)	147

		VII		
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{Cl}(1)$	0.90	2.48	3.338(3)	159
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{Cl}(2)$	0.90	2.31	3.195(3)	169
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{Cl}(1)$	0.90	2.45	3.299(3)	157
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{O}(7)$	0.90	2.05	2.930(4)	166
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{Cl}(2)^{2}$	0.90	2.37	3.222(3)	159
$\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{Cl}(3)$	0.90	2.38	3.227(3)	157
$\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{Cl}(2)^{2}$	0.90	2.69	3.486(3)	149
$\mathrm{N}(6)-\mathrm{H} \cdots \mathrm{Cl}(3)^{3}$	0.90	2.49	3.242(3)	142
$\mathrm{N}(6)-\mathrm{H} \cdots \mathrm{Cl}(2)^{2}$	0.90	2.39	3.253(3)	160
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(5)$	0.89	1.83	2.704(3)	167
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(2)$	0.74	2.36	2.875(3)	127
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{Cl}(3)^{1}$	0.79	2.36	3.135(3)	169
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{Cl}(2)^{4}$	0.90	2.23	3.119(3)	170
$\mathrm{N}(7)-\mathrm{H} \cdots \mathrm{O}(6)$	0.89	1.90	2.781(4)	172
$\mathrm{N}(7)-\mathrm{H} \cdots \mathrm{O}(2 w)$	0.89	1.96	2.802(4)	158
$\mathrm{O}(7)-\mathrm{H} \cdots \mathrm{O}(1 w)^{2}$	0.80	1.93	2.701(3)	160
*Symmetry codes: ${ }^{1}-y+2, z-1 / 2 ;{ }^{2} x+1 / 2,-y+5 / 2, z+1 / 2 ;{ }^{3} x,-y+3, z-1 / 2 ;{ }^{4} x+1 / 2,-y+3 / 2, z+1 / 2$ for VII.				
VIII				
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(6)^{2}$	0.80	1.81	2.587(1)	166
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{N}(4)^{2}$	0.80	2.62	3.379(1)	161
$\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(9)$	0.82	1.74	2.568(1)	176
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(5)^{1}$	0.90	2.49	3.297(1)	149
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(5)$	0.90	2.63	3.179(1)	120
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(11)^{5}$	0.90	2.04	2.902(1)	159
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(12)^{4}$	0.90	2.22	3.013(1)	146
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(4)$	0.90	2.65	3.142 (1)	115
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(12)$	0.90	2.17	2.957(1)	146
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(11)^{4}$	0.90	1.99	2.869(1)	165

*Symmetry codes: ${ }^{1}-x+2,-y,-z+1 ;{ }^{2} x, y, z+1 ;{ }^{3} x, y, z-1 ;{ }^{4} x,-y+1 / 2, z-1 / 2 ;{ }^{5}-x+1, y-1 / 2,-z+3 / 2$ for VIII.

Table 2. (Contd.)

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ contact	Distance, \AA			DHA angle, deg
	D-H	H $\cdots \mathrm{A}$	D $\cdots \mathrm{A}$	
IX				
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(2)^{1}$	0.89	1.88	2.770(2)	176
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(3)$	0.88	1.88	2.744(2)	166
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(1)^{1}$	0.90	1.87	2.757(2)	169
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(6)^{2}$	0.89	1.84	2.735(2)	175
*Symmetry codes: ${ }^{1}-x+2,-y+1,-z ;{ }^{2}-x+1, y+1 / 2,-z+1 / 2$ for IX.				
X				
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{I}(1)$	0.92	2.76	3.615(4)	156
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{I}(2)$	0.92	2.73	3.604(4)	160
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{I}(1)$	0.92	2.92	3.673(4)	140
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(1)$	0.90	1.96	2.779(4)	152
$\mathrm{O}(1 w)-\mathrm{H} \cdots \mathrm{O}(5)$	0.90	1.98	2.782(4)	148
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(2)$	1.02	2.24	3.016(5)	132
$\mathrm{O}(2 w)-\mathrm{H} \cdots \mathrm{O}(4)$	0.96	1.91	2.832(4)	160
$\mathrm{O}(3 w)-\mathrm{H} \cdots \mathrm{O}(3)$	0.89	2.03	2.853(4)	152
$\mathrm{O}(3 w)-\mathrm{H} \cdots \mathrm{O}(6)$	0.89	2.10	2.917(4)	152
$\mathrm{O}(4 w)-\mathrm{H} \cdots \mathrm{O}(1 w)$	0.90	1.90	2.793(4)	170
$\mathrm{O}(4 w)-\mathrm{H} \cdots \mathrm{O}(2 w)^{5}$	0.89	1.93	2.805(5)	166
$\mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(1 w)^{2}$	0.92	2.06	2.923(5)	156
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{O}(3 w)^{3}$	0.92	2.17	3.089(5)	174
$\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{I}(1)^{4}$	0.92	2.83	3.677(4)	153
* Symmetry codes: ${ }^{1} x, y+1, z+1 / 2 ;{ }^{2} x,-y+2, z+1 / 2 ;{ }^{3} x,-y+2, z-1 / 2 ;{ }^{4} x+1 / 2, y+1 / 2, z ;{ }^{5} x,-y+1, z-1 / 2$ for \mathbf{X}.				
XII				
$\mathrm{O}(1)-\mathrm{H} \cdots \mathrm{O}(6)$	1.03	1.40	2.429(3)	177
$\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(4)$	1.13	1.30	2.431(3)	175
$\mathrm{O}(5)-\mathrm{H} \cdots \mathrm{O}(3)$	1.12	1.31	2.414(3)	167
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{S}(2)^{1}$	0.90	2.70	3.520(2)	152
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{S}(3)^{1}$	0.90	2.82	3.687(2)	161
$\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{N}(10)$	0.90	2.08	2.952(3)	162
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{S}(3)^{3}$	0.90	2.59	3.410(2)	152
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{N}(7)$	0.90	2.19	3.028(3)	155
$\mathrm{N}(6)-\mathrm{H} \cdots \mathrm{S}(3)$	0.90	2.68	3.525(3)	157
$\mathrm{N}(6)-\mathrm{H} \cdots \mathrm{S}(4)^{4}$	0.90	2.53	3.410(3)	165
$\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{S}(3)$	0.90	2.68	3.517(3)	155
$\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{S}(1)^{5}$	0.90	2.78	3.578(3)	149

This points to bidentate coordination of these groups to the central atom upon complete displacement of the aminoethanolate ions from the inner sphere of the initial complex. X-Ray diffraction study of this compound (IX) demonstrated that it is an inorganic polymer described as $\left[\mathrm{Co}_{2}(\mu-\mathrm{HCOO})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$.

According to physicochemical analysis, the composition and structure of the complex formed in the reaction of chelate I with acetic acid are identical to those of compound VI (obtained by the direct reaction of monoethanolamine with cobalt acetate in neutral medium). Thus, in this case, the complex is only half protonated.

The reactivity of the known salt forms of cobalt aminoethanolates was studied in relation to the reac-
tions with potassium iodide and ammonium thiocyanate. The reactions of aqueous solutions of complexes IV, V, and VI with potassium iodide was accompanied by partial reduction of cobalt +3 to +2 and simultaneous deprotonation of the coordinated ligand to give compound \mathbf{X}. Treatment with potassium hydroxide transforms this complex into I, while treatment with a sulfuring acid solution gives III.

The composition and structure of the products of reaction of complexes II-VII and \mathbf{X} with ammonium thiocyanate depends on the composition of the initial compound. In the case of binuclear complexes II-VI, only double exchange reaction takes place accompanied by the formation of complex XI described in our earlier publication [5]. Meanwhile, treatment of an
aqueous solution of trinuclear compounds VII or IX with $\mathrm{NH}_{4} \mathrm{SCN}$ induces changes in the cobalt(II) coordination polyhedron to give complex XII.

In conclusion note the following.

1. In nitrate and acetate solutions, the dimeric complex cation $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}^{3+}$ with a cobalt oxidation number of +3 is formed.
2. In chloride solutions, cobalt is partly oxidized to give the trinuclear complex $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right]^{2+}$.
3. Upon protonation of the $\left[\mathrm{Co}(\mathrm{Etm})_{3}\right]$ chelate with nitric acid, the resulting complex cation, $\left.\left[\mathrm{Co}^{\text {III }}(\mathrm{HEtm})_{3}\right\}_{2}\right]^{3+}$, retains the mononuclear structure.
4. The reaction of potassium iodide with the dimeric complex cation $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}^{3+}$ results in partial reduction of cobalt(III) to cobalt(II) and deprotonation of the coordinated ligand HEtm to give trinuclear $\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right\}_{2}\right]^{2+}$.
5. The addition of a saturated solution of ammonium thiocyanate to the dimeric cation $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}^{3+}$ does not induce a change in the cation structure, whereas treatment of a solution of $\quad\left[\mathrm{Co}^{\mathrm{II}}\left\{\mathrm{Co}^{\mathrm{II}}(\mathrm{Etm})_{3}\right\}_{2}\right]^{2+}$ induces its decomposition to the dimeric cation
$\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]\right\}^{3+}$ and the monomeric anion $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{NCS})_{6}\right]^{4-}$, the isolated compound being $\left\{\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{HEtm})_{3}\right]\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Etm})_{3}\right]_{2}\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{NCS})_{6}\right](\mathrm{NCS})_{2}\right.$.

REFERENCES

1. Kotovaya, A., Shova, S., Simonov, Yu., et al., Russ. J. Coord. Chem., 2006, vol. 32, no. 11, p. 841.
2. Kotovaya, A.S., Shova, S.G., Simonov, Yu.A., and Gulya, A.P., Abstracts of Papers, XVII Ukrainska Konf. Neorgan. Khimii (XVII Ukrainian Conf. on Inorg. Chem.), Lvov, 2008, p. 22.
3. Kotovaya, A.S., Shova, S.G., Simonov, Yu.A., and Gulya, A.P., Russ. J. Coord. Chem., 2009, vol. 35, no. 3, p. 228.
4. Bertrand, J.A., Howard, W.J., and Kalyanaraman, A.R., J. Chem. Soc., Dalton Trans., 1971, p. 437.
5. Yilmaz, V.T., Andac, O., Karadag, A., and Harrison, W.T.A., J. Mol. Struct., 2002, vol. 641, p. 119.
6. Jones, D.J., Roziere, J., and Lehmann, M.S., J. Chem. Soc., Dalton Trans., 1986, p. 651.
7. Stepanenko, O.N. and Reiter, L.G., Ukr. Khim. Zh., 1992, vol. 58, no. 12, p. 1047.
8. Gorbunova, Yu.E., Kapanadze, T.Sh., Mikhailov, Yu.N., and Buslaev, Yu.A., Zh. Neorg. Khim., 1992, vol. 37, no. 5, p. 1080.

[^0]: ${ }^{\dagger}$ Deceased.

